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3.1 Sets of Real Numbers - Rational and Irra-
tionals

This section aims to give a more detailed description of sets of numbers larger
than just the integers Z. These larger sets, the rationals, reals, and complex
numbers, are intuitively simple yet have several striking properties.

3.1.1 The Rationals.

The rational numbers are the set of fractions that we know and love from ele-
mentary school. One would like to define the rationals as

Q =

{
p

q

∣∣∣∣ p, q ∈ Z, q 6= 0

}
.

Of course, this definition of Q gives us too many numbers, as we want for 1
2 and

2
4 to be seen as the same number. Thus, two elements of our set p1

q1
and p2

q2
are

declared to be the same if there is an integer k ∈ Z such that

p1
q1

=
k · p2
k · q2

.

Equivalently, we can say that our two elements are the same if

p1q2 = p2q1.

If we agree to have p and q relatively prime (i.e., the gcd(p, q) = 1), then we
have a unique representation of each rational number:

Q =

{
p

q

∣∣∣∣ p, q ∈ Z, q > 0, gcd(p, q) = 1,

}
.

3.1.2 The Reals.

The reals, though visually easy to describe as a complete line, are a bit more
subtle to define. We usually think of a real number as a (possibly infinite) string
of decimal places. We will only define these informally. The reals, denoted R,
are integers plus a (possibly infinite) string of decimal places, with the proviso
that infinite strings of ...99999 will be rounded up to the next decimal place.
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3.1.3 Not all Reals are Rational.

Clearly, every rational number is a real number, since we can just use long
division to obtain a decimal expansion for our rational number. However, there
are real numbers that are not rational; such numbers are called irrational. Oddly
enough, there are many more irrational numbers than there are rationals. One
of the easiest ways to construct irrational numbers is to take square roots of
non-perfect squares. For example, we will show below that

√
2 is irrational.

Further, it is true, though we will not show, that
√
a is irrational for any a

which is not a perfect square (i.e., there is no b ∈ Z such that b2 = a).

Theorem.
√

2 is irrational.

What follows is a proof by contradiction. These proofs are frequently em-
ployed in Mathematics. This proof assumes that the opposite of what we want
to prove is true; then, using this, we logically arrive at a statement which cannot
be true. Thus, we are forced to conclude that our initial assumption is false and
thus our statement is proved true.

Proof. To obtain a contradiction, assume that
√

2 is rational. Then, we may
write √

2 =
p

q

with p, q ∈ Z, q 6= 0, and p and q have no common divisors. Squaring both
sides, we obtain that

2 =
p2

q2

and thus p2 = 2q2. Since 2q2 is even (having a factor of 2 in it), p2 must also be
even. Since p2 = p · p, then p must be even (if p was odd, then p · p = p2 would
also be odd). Thus, p = 2r for some r ∈ Z. Substituting back in, we have that

4r2 = (2r)2 = p2 = 2q2.

Dividing by 2, we obtain that q2 = 2r2. As before, this tells us that q2 is
even and thus q is even. But, now both p and q are even and thus both have a
common divisor of 2. This, of course, contradicts our choice of p and q as having
no common divisors. Thus, by contradiction, our initial assumption that

√
2 is

rational is false and we must conclude instead that
√

2 is irrational, as desired.

3.2 Complex Numbers.

3.2.1 Motivating the Complex Numbers.

Complex numbers, despite their name, are in many ways easier to work with
than real numbers. They arose from the need of many mathematicians to mean-
ingfully define

√
−1; such a number cannot be contained in R, so instead we

must expand our notion of a number to the complex plane.

Proposition. There are no real solutions to x2 + 1 = 0.

Proof. This will again be a proof by contradiction. Assume x ∈ R was indeed
a real solution to x2 + 1 = 0; then,

x2 = −1.
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Now, any real number is either zero, positive, or negative. Clearly, x = 0 is
not a possibility since then 0 = −1. Further, if x is either positive or negative,
x2 > 0, but −1 < 0 and thus

−1 < 0 < x2,

contradicting the fact that x2 = −1. Thus, we are forced to conclude that any
solution to x2 + 1 = 0 cannot be a real number.

3.2.2 Constructing the Complex Numbers.

In order to rectify the fact that x2 + 1 = 0 has no real solutions, we construct a
larger space, called complex numbers and denoted by C, that contain a solution
to this equation. As a set, the complex numbers are given by

C = {x+ iy |x, y ∈ R}.

Intuitively, C contains two copies of R: the real part of a complex number
z = x + iy is given by x (the real number not associated to i); this is usually
written Re(z) = a. The imaginary part of a complex number z = x+ iy is given
by y (the real number attached to i); it is usually written Im(z) = b.

Of course, since there is a notion of addition and multiplication on R, we
should be able to give C an additive and multiplicative structure. These both
follow from the general rule that we keep our real and imaginary parts separate
and i2 = −1. Thus, given two complex numbers z = a + bi and w = c + di,
addition is given by

z + w = (a+ bi) + (c+ di) = (a+ b) + (c+ d)i.

Multiplication is given by FOILing:

z · w = (a+ bi) · (c+ di) = ac+ adi+ bci+ bdi2 =

ac+ adi+ bci− bd = (ac− bd) + (ad+ bc)i.

Of course, once we have multiplication, we also have a notion of division by
a non-zero complex number. In particular, we find the reciprocal 1

z of z ∈ C by
rationalizing the denominator:

1

z
=

1

a+ bi
· a− bi
a− bi

=
a− bi
a2 + b2

=
a

a2 + b2
+

−b
a2 + b2

i.

Of course, the denominator a2 + b2 is never zero since z was assumed to not be
zero (i.e, z 6= 0 + 0i).

3.2.3 The Geometry of the Complex Plane.

Since the complex numbers C seem to contain two copies of the real numbers R,
it seems likely that we may employ the geometry of the real plane R2 = R× R
to more visually understand complex numbers.

Given any complex number z = a+bi, we can consider the point (a, b) ∈ R2;
of course, this is the point given by finding a on the x-axis and b on the y-axis.
By the addition rule, it is clear that complex addition

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

corresponds to vector addition in R2, for those of us familiar with the concept.
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Given any complex number z = a+ bi, reflecting this point across the x-axis
corresponds to changing the sign of b. This operation is complex conjugation
and is given by

z = a+ bi = a− bi.

One geometric concept also worth exploring is distance. By the Pythagorean
Theorem, the distance from the point (a, b) to the origin (0, 0) is given by√

a2 + b2.

Thus, we can define the norm (also called modulus) of a complex number z =
a+ bi by

|z| = |a+ bi| =
√
a2 + b2.

Using complex conjugation, we have a succinct way of computing the norm:

√
z · z =

√
(a+ bi)(a− bi) =

√
a2 + b2 = |z|.

In general, if we are given two complex numbers z, w ∈ C in the complex
plane, we may compute the distance between them using the modulus. Specifi-
cally, the distance between z and w is given by

|z − w| .

3.2.4 Euler’s Equation.

Those of us familiar with the geometry of R2 know that xy coordinates are not
the only way to describe a point on the plane. The use of polar coordinates r
and θ are very useful in many applications. Essentially, r gives the distance of
our point from the origin (so 0 ≤ r) and θ gives the angle the point makes with
the positive x-axis (so, 0 ≤ θ ≤ 2π).

Euler’s equation uses these polar coordinates to describe our complex num-
ber z in terms of the exponential number e. Euler’s equation is given by

reiθ = r cos(θ) + ir sin(θ).

Since the complex number 1 + 0i = 1 is distance r = 1 from the origin and
makes an angle θ = 0 with the positive x-axis, we can write

1 + 0i = 1e0i = e0.

Since the complex number i = 0 + 1i is also distance r = 1 from the origin and
makes an angle of θ = π/2, we write

i = 1eiπ/2 = e
iπ
2 .

Next, the number −1 = −1 + 0i is distance r = 1 from the origin and makes an
angle of θ = π with the x-axis, so is given by

−1 = 1eiπ = eiπ.

In a similar fashion,

−i = e−
iπ
2 .

It is interesting to note that Euler’s formula for −1 gives us that

eiπ + 1 = 0.
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This is particularly striking because it includes the five most important numbers
in Mathematics: 0, 1, e, i, and π.

One striking feature of Euler’s Formula is that it gives us an easy way to
multiply two complex numbers. Given z = r1e

iθ1 and w = r2e
iθ2 , multiplying

gives
z · w = (r1e

iθ1)(r2e
iθ2) = (r1r2)ei(θ1+θ2).

Thus, the distance of the product of two complex numbers is the product of
their distances; further, the angle that the product makes with the x-axis is the
sum of the angles of the two complex numbers.

3.2.5 de Moivre’s Theorem

The polar expression for complex numbers has a variety of stunning applications.
Since Euler’s equation gives us the relation

eiθ = cos θ + i sin θ.

If we raise this expression to the n-th power and use the rule that
(
eiθ
)n

= einθ,
we obtain de Moirve’s Theorem:

(cos θ + i sin θ)
n

=
(
eiθ
)n

= ei(nθ) = cosnθ + i sinnθ.
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