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1.1 Mathematical Objectives and Foundations

1.1.1 Purpose of Mathematics

Mathematics is the science of placing order on the world by establishing axioms
(or truths) and logically deducing meaningful information from formal opera-
tions.

1.2 Set Theory

The basic object in Mathematics is the set. The purpose of this section is to
acquire the basic tools for describing and manipulating sets, especially sets of
real and complex numbers.

1.2.1 Definitions.

At its most basic level, a set is an infinite or finite collection of objects. Members
of a set are referred to as elements. If z is an element of a set S, we write

r €S

The notion of a set is devoid of any ordering or any other mathematical struc-
ture; that is, the set is the most basic concept in Mathematics.

Furthermore, if we have a set S, we say that A is a subset of S (denoted
A C S) if every element of A is also in S. Intuitively, the subset A is contained
in the set S. Following are some basic examples.

Ezxample - The Empty Set.
The empty set is the set which has no elements. It is denoted by @ or {}. The
empty set is a subset of any set S: @ C 5.

Example - A finite set of numbers.

An instance of such a set is S = {1,4,56, —89,v/2,m,e?}. This set S is finite
because there is only a finite number of elements. One possible subset is A =
{1,—89,7}. Note that A is indeed a subset of S since every element of A is also
in S.

Ezample - The Natural Numbers.
Consider the set N = {0,1,2,3,...} of all non-negative whole numbers. This
set is called the natural numbers.

Ezxample - The Integers.



Now, consider a set larger than N called the integers:
Z={..,-3,-2,-1,0,1,2 3}
We can give an equivalent definition of Z as
Z = {x| |z| € N}.
In general, mathematicians frequently describe sets using this notation:
S ={«|P},
where P is some statement about  and the vertical line is read as “such that”.

In our example, P is the statement “|z| € N”.

1.2.2 Operations on Sets

If we are given two sets S and T, we may form their intersection SN 7T:
SNT ={z|ze€Sandx €T}

Thus, S NT is the set of elements that are both in S and in T. Thus, the
intersection of two sets is a subset of each set:

SNTcCS and SNT CT.
Similarly, we can form the union of two sets S and T by
SUT ={z|z €S or z €T}

This time, we note that S and T sit inside of S U T’; thus, in subset notation,
we have the following:

ScSJUT and TC SUT.

As a last operation, we may take the complement of a set. If we are given
a subset A C S, then the complement of A in S is given by

A={x eS|z ¢ A},

where © ¢ A means x is not an element of A. It is important to note that we
must take the complement of A in some larger set S. In terms of subsets and
the above operations, we have

1.2.3 Equality of Sets.

In the previous section, we noted that AU A = S, but we have not formally
defined the equality of two sets. We say that two sets S and T are equal if
S C T and T C S. For example, it is clear that A U A C S since both A and
A are subset of S, so their union is also a subset of S. On the other hand, any
clement = € S is either in the subset A or it is not in A; thus, z € AU A. Thus,
by our definition, AU A = S.

One of the main theorems of basic set theory is the following distribution
law.



Theorem. - Distributive Law Let A, B, and C be sets. Then, AN(BUC) =
(ANB)U(ANCQC).

Proof. To prove that that AN (BUC) = (AN B)U(ANC), we will prove the
following two set inclusions:

AN(BUC)C(ANB)U(ANC) and (ANB)U(ANC) C AN(BUO).

For the first inclusion, we assume x € AN (B U C). Then, by definition,
isin A and x is in B or C. In the first case, x € A N B; in the second case,
x € ANC. Thus, by definition € (AN B) U (AU B). Since z is any element
of our starting set AN (B UC), we conclude that

AN(BUC)C (ANB)U(ANC).

Next, we assume that z € (AN B)U (AN C). Then, by definition, z is in
A and B or z is in A and C. Either way, © € A; further, = will be in B or
C. Thus, x € AN (BUC). Again, since x was an arbitrary element of the set
(ANB)U(ANC), we conclude that

(ANBY)U(ANC)Cc An(BUCQ).

By the definition of equality of sets, we conclude that we have our desired
equality of sets:
AN(BUC)=(ANB)U(ANCQO).

1.2.4 Functions on Sets

One way of relating two sets S and T is to describe functions
f:85->T

that assigns to every element s € S an element f(s) € T. The set S is called
the domain of the function f and T is called the co-domain or target.

There is no guarantee that every element in t € T will have some s € S that
maps to it; that is, there is no guarantee that there exists some s € S such that
f(s) = t. Another way of saying this is that we have no guarantee that ¢ has
a preimage. In fact, the subset of T" of elements that are mapped to by f is
known as the image of f. It has the following set-theoretic description:

Image(f) ={t €T | Is € S s.t. f(s) =t}

The image of a function is always a subset of the target set 7. In the special
case that the image is the entire set T' (that is, that every element in 7" has a
preimage), we say that the function is onto or surjective.

If an element ¢ € T is in the image of f, there is also no guarantee that there
is exactly one preimage. Many times, multiple elements in S are mapped to
the same ¢t. When this does not happen (that is, when every ¢t € T has at most
one preimage), we say that the function f is one-to-one or injective. Another
way of formulating one-to-one-ness is given as follows: A function f : S — T
is one-to-one or injective if whenever f(s1) = f(s2), then s; = s3. This
practical definition (i.e., the one that you would use in a proof) ensures that
if you thought that multiple elements of S were mapping to the same ¢ (i.e.
f(s1) = f(s2)), then in fact these elements were all the same one element (i.e.
S1 = S2).



It should be clear that a function can be one-to-one but not onto and vice
versa. The special functions that are both one-to-one and onto are called bijec-
tions. In set theory, these kinds of functions are very powerful; if there exists
a bijection between S and T', then the two sets are considered to be the same.
The onto-ness ensures that to every t € T is associated at least one s € S,
the one-to-one-ness ensures that there is at most one s € S associated to every
t € T'. Putting these two concepts together, we see that a bijection ensures that
to ever t € T there is associated exactly one s € S.



