
Chapter 16

Thursday, August 4, 2011

16.1 Springs in Motion: Hooke’s Law and the
Second-Order ODE

We have seen alrealdy that differential equations are powerful tools for under-
standing mechanics and electro-magnetism. In particular, we have used differ-
ential equations in previous workshop questions to understand how Kerchoff’s
Law can be used to find the current of a circuit and how to use Newton’s Laws
of Motion to compute terminal velocity. Today, we will be focusing on us-
ing second-order differential equations to determine the motion of a spring via
Hooke’s Law. Solving such systems will require a review of how to solve general
second-order, linear, homogeneous systems with constant coefficients as well as
develop a technique called the method of undetermined coefficients to solve the
non-homogeneous equations.

16.1.1 Understanding Vibrating Springs

The physical system we will be considering is that of an object of mass m
hanging on a spring, which is allowed to stretch and contract within certain
reasonable limits. A similar situation occurs when instead of a hanging mass
on a spring, we have a mass attached horizontally to a spring that is allowed
to push and pull on the mass. We will be focusing, however, on the former
situation of the hanging mass.

The goal is to obtain a function x(t) such that at every time t, x(t) will
read how far the mass has moved (or displaced) from its resting location. Since
this distance is relative, we must stress that as the mass lays hanging with no
motion, it is at its equilibrium displacement and thus x = 0. We will be using
the convention that if the mass moves x inches below this equilibrium, then x
will be positive. Thus, contrary to our usual coordinate system, downward will
be considered the positive direction.

When we pull the mass below its equilibrium (resting) point, we will feel a
tension or force pulling upwards trying to restore the mass to its initial equilib-
rium. In contrast, if we push the mass above the resting point, then the spring
will try to push it back to rest. Of course, if the mass it at rest, then there
is no net force acting on it and it remains at rest. Using these observations,
Hooke argued that this restoring force (the one that tries to push or pull the
mass back to its resting point) is proportional to how far the mass is from its
equilibrium. Thus, Hooke’s law, written algebraically, gives us that

restoring force = −kx, k > 0.

1



This equation is certainly convincing since, the further we pull our mass
from rest, the stronger we feel the restoring force. We further notice that since
k > 0, −k < 0 and thus the restoring force always acts in the opposite direction
of our pull. Of course, this simply means that the restoring force is acting to
move the mass back towards it equilibrium position. Furthermore, when the
mass is at its resting location of x = 0, we see that there is no restoring force,
and the mass will thus not move.

Newton’s Laws of Motion indicate that force is equal to the product of the
mass of an object and its acceleration. Of course, acceleration is simply the
derivative of velocity and, in turn, velocity is the derivative of displacement
or distance. Thus, since x(t) is our displacement, combining Hooke’s Law and
Newton’s Laws of Motion gives us the differential equation

m
d2x

dt2
= −kx.

Of course, this equation assumes that there are no other forces acting on our
system. With this assumption, we may solve our differential equations using
second-order methods from earlier this week.

Thus, given the differential equationsmx′′+kx = 0, we find its corresponding
characteristic equation mx2 + k = 0 and thus have

r = ±i
√
k

m
.

Notice that since both mass m and the spring constant k are positive, these two
roots are purely imaginary. The number

√
k/m = ω is called the frequency

and has an important physical interpretation, as we will see below. So, using
our previous analysis of second-order ODEs, the general form for our solution
will be

x(t) = c1 cos(ωt) + c2 sin(ωt).

From common experience, though, we realize that the motion of a mass on
a spring is relatively simple and looks like a sine or cosine wave. In the above
format, though, we see that it is expressed as a linear combination of sin(ωt)
and cos(ωt). However, after some algebraic manipulations, we see that we can
indeed transform the above into the more familiar function A cos(ωt + δ). We
do this by setting our cosine expression equal to the original general solution
and use the cosine angle-sum formula:

A cos(ωt) cos δ −A sin(ωt) sin δ = A cos(ωt+ δ) = c1 cos(ωt) + c2 sin(ωt).

Using this expression, we can see that we can write A and δ in terms of the
general form by having

A =
√
c21 + c22 and cos δ =

c1
A

& sin δ = −c2
A
.

The above equations are sufficient to solve for A and δ. The quantity A is known
as the amplitude and it measures the maximum displacement of the spring.
δ is known as the phase angle and relates with the initial placement of the
mass. A spring on a mass that undergoes such a displacement is said to be in
simple harmonic motion .

Example. A spring with a mass of 2 kg has a natural length (resting length)
of .5 m and a force of 25.6 N (N stands for Newtons and is the unit for force) is
required to maintain it stretched at a length of 0.7 m. If the spring is stretched
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to a length of 0.7 m and then released with initial velocity 0, find the position
of the mass x(t) at time t.

Solution. We may use Hooke’s law to find the spring constant k. Since the
mass is at rest naturally at .5m and must be pulled downward (in the positive
direction) an extra x = 0.2 m, then Hooke’s law says that

25.6 = k(0.2)

and thus k = 128 N/m. Thus, we may establish our differential equation to be

2x′′ + 128x = 0.

The further information about the initial state of the spring gives us the initial
conditions that x(0) = .2 (since it started at length 0.7 m) and that x′(0) = 0
(since there was no initial velocity). We may also calculate the frequency ω =√
k/m =

√
128/2 = 8. Using the above discussion, we see that the general

form for the solution is given by

x(t) = c1 cos 8t+ c2 sin 8t.

We may then plug our initial values into x(t) and x′(t) to obtain our coefficients
c1 = .2 and c2 = 0. Thus, the location of our mass at time t is given explicitly
by

x(t) = .2 cos(8t).

Notice that, since c2 = 0, we did not have to transform this into a single cosine
term since it came to us in this form.
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Figure 16.1: The graph of the displacement x(t) for simple harmonic motion

16.1.2 Dampened Vibrations

A more realistic situation that we have encountered in the past when dealing
with springs is that they do eventually come to rest after oscillating with de-
creasing amplitude. Of course, the above situation of simple harmonic motion
indicates that the spring will never come to rest and will continue to oscillate
with constant amplitude A. The above situation, however, neglected to take
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into consideration any kind of damping or frictional force that will eventually
slow the spring down. As with our computation of terminal velocity in a pre-
vious workshop, we will assume that this damping force is proportional to the
velocity of the spring itself. Thus, we have

damping force = −cdx
dt
,

where c is once again assumed to be a positive constant. As with the restoring
force, we see that the damping force acts in the opposite direction of displace-
ment and thus helps the mass return to its equilibrium.

If we used Newton’s Law of Motion again, but this time included not just the
restoring force but also the damping force, then we obtain the new differential
equation

m
d2x

dt2
= −kx− cdx

dt
.

Re-writing we obtain the differential equation

mx′′ + cx′ + kx = 0.

It is precisely this cx′ term that will make our new equation more complicated
but will force it to account for the dampening.

To solve the above system as before, we must first find the roots of the
characteristic polynomial mx2 + cx + k. Using the quadratic equation, we see
that our roots are

r1,2 =
−c±

√
c2 − 4mk

2m
.

Thus, we must discuss the three possibilities: two distinct, real roots; one re-
peated, real root; and two distinct (conjugate) complex roots.

16.1.3 Overdampening - the case of two real, distinct roots

Our spring system is said to be overdampened if the roots to the characteristic
polynomial are distinct and real. For this to be true, it must be case that
c2 − 4mk > 0 so that the square root portion of the quadratic equation yields
two different, real answers. Furthermore, since c,m, and k are all positive
constants, we have that √

c2 − 4mk <
√
c2 = c

and thus our roots must all be negative.
So, we know that in general the form for the displacement will be given by

x(t) = c1e
r1t + c2e

r2t.

Since our two roots are negative, the exponential terms each tend to 0 and thus
limt→0 x(t) = 0 and eventually our system will again be at rest. In these cases,
our mass may cross the equilibrium one more time at most, but then quickly
return to rest.

16.1.4 Critical dampening - the case of one repeated, real
root

Our system is called critically dampened if it still acts like the overdamped
case, but serves as the bordering situation. This occurs when we begin to
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Figure 16.2: An overdampened system

transition from real to complex roots. This intermediate stage manifests in one
repeated, real root and occurs when we have the following algebraic equation:

c2 − 4mk = 0.

In this case, the square root portion of the quadratic equation is zero we have
one real root with multiplicity two. Furthermore, this one root will be precisely

r1 = r2 =
−c
2m

,

which is negative since both c and m are positive.
The general solution for this comes of the form

x(t) = c1e
rt + c2te

rt.

Clearly, the first term will tend to zero as t → ∞ since our root r is negative.
Also, since an exponential with negative exponent tends to zero faster than
a linear t tends towards infinity the second term involving tert will also tend
towards zero. Thus, in this critical damping case, we still have a quick descent
towards equilibrium.

16.1.5 Underdampening - the case of two, complex conju-
gate roots

The final case, called underdampening occurs when there is still some residual
oscillation, but our system continues to tend towards rest. This situation occurs
when we have the algebraic inequality: c2−4mk < 0. Since this discriminant will
be negative, taking a square root will result in the appearance of an imaginary
part and our roots will thus be complex. They are conjugate precisely because
the quadratic equation says one can obtain one root from the other by adding
or subtracting the imaginary part.

In this complex case, we have the situation where our roots are given by

r1,2 =
−c
2m
± ωi,
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Figure 16.3: An critically dampened system

where

ω =

√
4mk − c2

2m
.

Notice that this is the same ω as in our undampened example because, if c = 0
(and thus no damping is taking place), we have that ω =

√
k/m. Having these

roots, we can find the general form to our system to be

x(t) = e−ct/2m (c1 cosωt+ c2 sinωt) .

The cosine and sine terms indicate that our system will continue to oscillate,
while the exponential term will take the entire system back to its equilibrium
of x = 0.
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Figure 16.4: An underdampened system bounded by two exponential functions

Note: The motivation for the lecture was obtained from a very well-written
section on “Applications of Second-Order Differential Equations” in Stewart’s
Calculus text.
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