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15.1 Parametric Equations

Usually, when describing the a curve in R2, it is given by some function f(x) and
is sketched on the xy-plane by plotting all pairs of points (x, f(x)). However,
since these curves are described by functions, their shapes are very constrained.
One key feature of f being a function is that it must pass what is frequently
called the vertical line test, which simply means that above every input value
x there is at most one value f(x) associated to it. Graphically, this means
that for any vertical line we draw, we must hit at most one point on the curve.
This limited way to describe curves means that we cannot, for example, use a
function to describe the circle of radius 1 about the origin since it will certainly
fail the vertical line test. However, if we use parametric equations instead of
functions to descibe our curves, we see that we may succintly descibe several
other kinds of curves (including the circle).

15.1.1 Representing Curves as Parametric Equations

A parametic equation for a curve on the xy-plane is a way to describe how
the two coordinates x and y change as a function of a time parameter t. In other
words, at any point parametric equation in the xy-plane is given by a 2-tuple
of functions in the variable t:

(x(t), y(t)).

Of course, similar constructions are available in Rn for any n; in general, these
parametric equations will trace out a one-dimensional curve in Rn; we will be
focusing on parametric equations in R2, however.

With this in mind, let us return to our example of the circle. Assume that
we want to begin at the point (1, 0) at time t = 0 and proceed counterclockwise
around the circle of radius 1. Since our circle is radius 1, for every time t, it
must be true that our point (x(t), y(t)) is distance 1 from the origin and thus
(by the Pythagoream Theorem)

x(t)2 + y(t)2 = 1.

Thus, we must find functions x(t) and y(t) that satisfy this equation for all t.
Our trigonometric experience tells us that sin t and cos t are good candidates.
To choose which one will be x and y, we recall that we indicated that at time
t = 0, we should have that (x(0), y(0)) = (1, 0). Thus, our parametric equation
becomes

(x(t), y(t)) = (cos t, sin t).
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Checking several values, we see that this curve traces out a circle in a counter-
clockwise manner at t increases. In fact, at t = 2π, we see that we return to
(1, 0) and continue the process over. Thus, we may simply constrain ourselves
to using 0 ≤ t ≤ 2π.

-2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4

-1.6

-1.2

-0.8

-0.4

0.4

0.8

1.2

1.6

Figure 15.1: The circle as a parametric curve

In a similar spirit, we may construct numerous beautifully complicated
curves in the xy-plane by expressing them as parametric equations. One other
example is the curve is sketched below and is given by the parametric equation

(x(t), y(t)) = (3 sin 5t, 3 cos 3t).

Figure 15.2: A parametric curve

15.1.2 Functions as Parametric Equations

One important feature of parametric equations is that they are a more general
way of drawing curves than simply using a function f(x); in other words, we
may represent any curve that comes from a function f(x) by turning it into a
parametric equation. To do this, we notice that these functional curves come
from plotting points (x, f(x)). Thus, to turn this into a parametric equation,
we simply let x(t) = t and then y(t) = f(t). Thus, any curve coming from a
function may be represented by

(x(t), y(t)) = (t, f(t)).

2



15.2 Systems of Differential Equations

Since parametric equations allow us to generalize curve drawing from simply
functions to more exotic shapes, we wish to also broaden our understanding of
differential equations to provide a method for describing parametric equations
via differential equations. Since parametric equations require understanding two
different functions x(t) and y(t), we need a system of differential equations
to describe their behavior using derivatives. We will be restricting ourselves to
systems of first-order differential equations. Thus, our systems will take on the
from

dx

dt
= f(t, x, y)

dy

dt
= g(t, x, y)

As usual, both f and g are simply expressions that use only the parameter t
and the two coordinate variables x and y.

15.2.1 Linear Systems of Differential Equations

Of particular importance are those systems of equations that are linear. We call
a system linear if each both f(t, x, y) and g(t, x, y) are linear functions. Thus,
we may write any such system of differential equations as

x′(t) = a11(t)x+ a12(t)y + g1(t)

y′(t) = a21(t)x+ a22(t)y + g2(t)

Another important distinction to consider is when our system is homogeneous.
As above, a system is homogeneous if both equations have gi(t) = 0. In this
case, our system reduces to

x′(t) = a11(t)x+ a12(t)y

y′(t) = a21(t)x+ a22(t)y

Even simpler is when our system is further constrained by asking that the coef-
ficient functions aij(t) be constant functions. In this case, we may simply write
our system as

x′(t) = ax+ by

y′(t) = cx+ dy

When we are dealing with a system of first-order, linear, homogeneous differ-
ential equations, the particularly simply form begs us to utilize our knowledge
of linear algebra to re-write the above system in the following matrix equation:[

x′

y′

]
=

[
a b
c d

] [
x
y

]
.

To solve such a system, we must simultaneously solve for the functions x(t)
and y(t); in other words, when we plug x and y into our system, both equations
must be satisfied. Since our differential equations have a particularly simple
form, we (as with second-order, linear, homogeneous equations with constant
coefficients) assume that x and y have the form x(t) = x0e

λt and y(t) = y0e
λt.

Thus, our solution vector will be of the form[
x
y

]
=

[
x0e

λt

y0e
λt

]
=

[
x0
y0

]
eλt.
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If we take derivatives of both x and y, we are left with[
x′

y′

]
=

[
x0λe

λt

y0λe
λt

]
= λ

[
x0e

λt

y0e
λt

]
= λ

[
x
y

]
.

However, from the above formulation of our system, we also have that the
derivatives are equal to our coefficient matrix times the vector [x, y]. Thus, we
are left with the matrix equation[

a b
c d

] [
x
y

]
= λ

[
x
y

]
.

This is precisely the eigenvalue equation for the coefficient matrix with eigen-
vector [x, y] and eigenvalue λ.

Since finding a solution to our system has reduced to finding eigenvalues and
eigenspace for the coefficient matrix A, we must review the possibilities for our
eigenvalues. Recall that to compute eigenvalues of a square matrix A, we must
find the roots to the characteristic polynomial equation

det(A− λI) = 0.

Since the characteristic polynomial det(A− λI) is a real quadratic polynomial,
there are exactly three cases we must consider: distinct, real eigenvalues; a re-
peated, real eigenvalue; and two complex conjugate eigenvalues. For simplicity
sake, we will only be investigating those systems with two distinct, real eigen-
values.

15.2.2 Distinct, Real Eigenvalues

The simplest case is when we have two distinct eigenvalues λ1 6= λ2. Of course,
each eigenvalue has its corresponding eigenvectors (forming their corresponding
eigenspaces). Let us assume that we have already found an eigenvector [x1, y1]
for each eigenvalue λ1. Given this linear-algebraic information, we understand
that one set of solutions to the system of equations is given by[

x
y

]
=

[
x1e

λt

y1e
λt

]
.

Thus, the parametric equation (x(t), y(t)) = (x1e
λt, y1e

λt) gives a solution to our
system of equations. While it seems that sketching such a parametric equation
may be difficult, we will instead use our understanding of linear algebra to sketch
this parametric equation.

Since x(t) = x1e
λ1t and y(t) = y1e

λ1t, for any t, [x(t), y(t)] will be a multiple
of the eigenvector [x1, y1] and thus remain on the line spanned by this eigen-
vector. Thus, as t changes, (x(t), y(t)) will travel along this line; however the
direction in which it travels is dictated by the sign of λ1. Note that if λ > 0, then
as t grows posititvely (x(t), y(t)) will move away from the origin in the direction
of [x1, y1]. As t grows negatively, then (x(t), y(t)) will start to approach the
origin since both the x and y coordinates are tending towards zero. In contrast,
if λ < 0, we have the exact opposite case: as t grows positive, (x(t), y(t)) tends
towards the origin while as t grows negative, it moves away from the origin
along [x1, y1]. In the unique case that we have an eigenvector of λ1 = 0, we see
a completely different phenomenon. In this situation, our solution is given by[

x(t)
y(t)

]
=

[
x1
y1

]
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for all values of t. Thus, the points in the eigenspace corresponding to λ1 are
stationary or equilibrium points.

Of course, since the second eigenvalue λ2 is distinct from λ1, their corre-
sponding eigenspaces do not overlap (except, of course, for the zero vector 0).
As with λ1, we can find a solution to our solution of the form[

x(t)
y(t)

]
=

[
x2e

λ2t

y2e
λ2t

]
,

where [x2, y2] is an eigenvector for the eigenvalue λ2. Similar to the analysis
above, the sign of λ2 will tell us about the dynamics of the system of equations
on the line spanned by [x2, y2].

One major advantage of finding these solutions via eigenvectors and eigen-
values is that these form a basis for the solution space. Since our system is
homogeneous, the space of solutions will, as usual, form a vector space. Thus,
any solution to our system is written as a linear combination of the above two
solutions. Thus, in general, a solution to our system of equations is given by[

x(t)
y(t)

]
= c1

[
x1
y1

]
eλ1t + c2

[
x2
y2

]
eλ2t.

Another major advantage of analyzing this system of equation in terms of
eigenvalues is that it gives us information about how objects flow around the
xy-plane. In particular, if both λ1 and λ2 are positive, we have that solutions
along the eigenvectors flow away from the origin. In particular, we have that
if we start at some point on the plane, it will eventually flow away from the
origin; when such a situation occurs, the origin is called a source . Conversely,
if both eigenvalues are negative, then eventually every point will flow towards
the origin and it is known as a sink . However, when one eigenvalue is postiive
and the other is negative, then we have a situation where some solutions begin
to tend towards the origin but, as they approach it, suddenly turn away. When
this occurs, the origin is known as a saddle . The final case is when one of the
eigenvalues is zero. As mentioned above, this gives us a line of solutions that
are stationary (called equilibria). Points not on this stationary line will flow
either towards or away from this stationary line; they will flow towards this line
if the other eigenvalue is negative and away if the eigenvalue is positive.

15.2.3 An example.

To make our above discussion concrete, let us consider the following system of
equations: [

x′(t)
y′(t)

]
=

[
2 −4
−1 −1

] [
x(t)
y(t)

]
.

If we call the above coefficient matrix A, then we must first find the eigenval-
ues and corresponding eigenspaces of A. The characteristic polynomial for the
matrix A is

λ2 − λ− 6 = (λ− 3)(λ+ 2).

Thus, we have eigenvalues λ1 = −2, λ2 = 3. A quick calculation shows that the
corresponding eigenspaces are given by

E−2(A) = c

[
1
1

]
and E3(A) = c

[
4
−1

]
.
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(a) A source: λ1, λ2 > 0 (b) A sink: λ1, λ2 < 0

(c) A saddle: λ1 < 0 < λ2 (d) λ1 = 0, λ2 > 0

Figure 15.3: The Dynamics of a System of Equations with Distinct, Real Roots

Thus, the general solution for our equation will be of the form[
x(t)
y(t)

]
= c1

[
1
1

]
e−2t + c2

[
4
−1

]
e3t.

To draw the corresponding phase portrait , must first sketch the eigenspaces
we found. Around the eigenspace corresponding the eigenvalue λ1 = −2 (which
is spanned by [1, 1]), our vectors will all be pointing towards the origin (because
−2 < 0). Conversely, for the eigenspace corrsponding to the eigenvalue λ2 = 3
(which is spanned by [4,−1]), the vectors near this line will be pointing away
from the origin (since 3 > 0.) Thus, our phase portrait has the form given in
the diagram below.
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Figure 15.4: The phase portrait for our system of equations.
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We may immediately see that, as expected, the origin is a saddle point. The
dynamics are such that being on one side or the other of the eigenlines will
drastically affect the long-term behavior of a solution. These unstable equilibria
are of crucial important to chaos theory and dynamical systems. We are not
surprised, however, that we do obtain a saddle point since our eigenvalues come
with opposite signs.

Of course, the above system gives us infinitely many solutions (corresponding
to our choices of c1 and c2). To pin down a particular solution, consider the
initial values given by x(0) = 1 and y(0) = 0. Inputting these values into our
general form will give us the explicit form for the solution that passes through
the point (1, 0). Plugging in, we obtain the system of equations

c1 + 4c2 = 1
c1 − c2 = 0

.

Solving, we obtain c1 = c2 = 1/5. Thus, our particular solution has the form[
x(t)
y(t)

]
=

1

5

[
1
1

]
e−2t +

1

5

[
4
−1

]
e3t =

[
.2e−2t + .8e3t

.2e−2t − .2e3t
]
.

Plotting this particular solution on our phase portrait, we obtain the following
diagram.
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Figure 15.5: A particular solution to our system of differential equations
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