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14.1 Exact Equations

Consider the first order differential equation given by

M(x, y) +N(x, y)y′ = 0

and suppose that we can find some function Ψ(x, y) such that

∂Ψ

∂x
= M(x, y) and

∂Ψ

∂y
= N(x, y),

where the above derivatives are partial derivatives. First, we note that partial
derivatives are almost synonymous with ordinary derivatives, except that we
must denote which variable we are taking the derivative with respect to; knowing
this, we treat all other variables as constants and then just differentiate with
respect to just one variable. Thus, after finding this function Ψ(x, y) (called the
potential function), we can re-write our equation as

∂Ψ

∂x
+
∂Ψ

∂y

dy

dx
= 0.

We note that by the chain rule:

dΨ

dx
=
∂Ψ

∂x

dx

dx
+
∂Ψ

∂y

dy

dx
=
∂Ψ

∂x
+
∂Ψ

∂y

dy

dx
.

Thus, our differential equation reduces even more to

d

dx
(Ψ(x, y)) = 0.

When we can find this function Ψ(x, y), we say that our differential equation
is exact . These exact equations are then easily integrable once Ψ is identified
and our solution is given implicitly by the equation

Ψ(x, y) = c.

Example
Consider the differential equation

2x+ y2 + 2xyy′ = 0.
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We wish to find the function Ψ(x, y) such that the following two equations hold:

∂Ψ

∂x
= M(x, y) = 2x+ y2

∂Ψ

∂y
= N(x, y) = 2xy.

Consider the two variable function

Ψ(x, y) = x2 + xy2.

Clearly, its two partial derivatives agree with M and N . Thus, our analysis
above tells us that our solution y satisfies the implicit equation

x2 + xy2 = c.

Of course, we can solve here by algebraically manipulating to obtain the explicit
form for our solution:

y =

√
c

x
− x.

14.2 Second Order Linear Equations

With the introduction of a higher order derivative d2y
dt2 , the difficulty in solving

for y greatly augments. These second order differential equations are those
which can be written in the form

d2y

dt2
= F

(
t, y,

dy

dt

)
.

14.2.1 Describing Second Order Differential Equations

By far, the most important subclass of Second Order Differential Equations are
those which are linear. These are those differential equations of order 2 that
can be written as

y′′ + p(t)y′ + q(t)y = g(t).

Thus, this equation is linear because it is linear in the 0-th, 1-st, and 2-nd
derivatives y, y′, and y′′. Any second order differential equation that cannot be
written in this way is called nonlinear. Note that if we are presented with a
second order differential equation where y′′ has some function as a coefficient,
we may simply divide through by this function to obtain one of the form above.

The second most important distinction is that between homogenous and non-
homogenous equations. A homogenous equation is one where the t-dependent
term g(t) is equal to zero; thus a second order linear homogenous differential
equation is given by

y′′ + p(t)y′ + q(t)y = 0

14.2.2 Second Order Linear Homogenous Differential Equa-
tions with Constant Terms

In general, second order linear homogeneous ODEs are difficult to solve. So, we
restrict ourselves to the case when the coefficient functions are all constant. So,
let us consider the second order homogenous differential equation given by

ay′′ + by′ + cy = 0.
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Since the solution y appears with all its derivatives in such a simple form, it is
reasonable that y would have the term ert and some of its variants. For now,
let us assume that y = ert and let us plug this into our differential equation:

ar2ert + brert + cert = 0.

Of course, each of these terms has a common ert, so we can thus factor to obtain

(ar2 + br + c)ert = 0.

Note that since ert > 0, the left hand side is zero if and only if the quadratic
polynomial ar2 + br + c = 0 (called the characteristic polynomial). Thus,
we can find the appropriate r using the quadratic equation.

Now that we have our characteristic polynomial and have a way to find the
two roots r, we need to make sense of what they mean. First, we note that the
homogenous nature of this equation makes the solution space a vector space.
Clearly, if y1 and y2 are two solutions to this differential equation, then so is
y1 + y2. Further, if y is a solution, then αy is a solution for any α ∈ R. Thus,
the solution space of these second order linear homogenous equations is a vector
space. Thus, we must find a basis for this vector space, and this is exactly what
the two roots of our characteristic polynomial will give us.

Of course, we must also make sense of what happens when our roots are not
real. If they are not real, then we must make sense of what a complex root will
correspond to; we will come to this soon.

14.2.3 Two Real distinct roots

For now, we will consider the case when our characteristic polynomial has two
distinct real roots r1, r2 ∈ R. In this case, consider the two solutions y1 =
er1t, y2 = er2t. Clearly, these two are actually solutions. As noted before, since
our solution space is a vector space, any linear combination of y1 and y2 is also
a solution to our differential equation. Thus, the solutions to our differential
equation take the form

y(t) = c1e
r1t + c2e

r2t.

Note that since our roots are distinct, this linear combination is non-trivial in
some sense. It turns out that these are all possible solutions to this differential
equation. If we wanted to pin down one particular solution, we would have to
be able to solve for c1 and c2; to be able to do this, we must have two initial
conditions about y and y′.

Example. Consider the initial value problem

y′′ + 5y′ + 6y = 0

with initial conditions y(0) = 2 and y′(0) = 2. First, we solve the general
differential equation by considering the characteristic polynomial

r2 + 5r + 6 = (r + 3)(r + 2).

Thus, the two distinct real solutions to this characteristic polynomial are r =
−2,−3. Thus, all of our solutions will be of the form y(t) = c1e

−2t + c2e
−3t. To

find our particular solution to this initial value problem, we use y(0) = 2 and
y′(0) = 2. Using the first value, we have that

2 = c1 + c2.
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Taking a derivative of y and using y′(0) = 2, we have that

2 = −2c1 − 3c2.

Solving this system of two equations, we see that c1 = 8 and c2 = −6 and thus
the solution that satisfies our initial value problem is

y(t) = 8e−2t − 6e−3t.

14.2.4 Two Real Repeated Roots

In the case when our characteristic polynomial has two real repeated roots, then
the general solution found above

y(t) = c1e
r1t + c2e

r2t

is redundant because these exponential terms are no longer linearly independent.
To fix this problem, we must add a factor of t to one of these terms. Thus, the
general solution to a second order linear homogenous equation with repeated
root real root r is given as follows:

y(t) = c1e
rt + c2te

rt.

Example. Consider the initial value problem with differential equation given
by

y′′ − 4y′ + 4y = 0

and initial values y(0) = 1, y′(0) = 0. Then the characteristic polynomial of
this equation is given by

r2 − 4r + 4 = (r − 2)2.

Of course, there is one double root r = 2. Thus, our general solution will be of
the form

y(t) = c1e
2t + c2te

2t.

Using our first initial condition y(0) = 1, we immediately see that c1 = 1. If we
differentiate our solution y, we have that

y′(t) = 2c1e
2t + c2e

2t + 2c2te
2t

and thus that c2 = −2. Thus, our solution to our initial value problem is given
by

y(t) = e2t − 2te2t.

14.2.5 Two Complex Roots

If at least one of our roots is not real, then the other roots must also be non-
real; this follows from the fact that any polynomial with coefficients in R will
have solutions coming in pairs given by complex conjugation. Of course, this
does not apply when we have one real root because the complex conjugate of a
real number is itself. Thus, if our characteristic equation has the complex root
r1 = γ + iµ, then the other root must be r2 = r1 = γ − iµ.

Now, we must make sense of e(γ+iµ)t. First, we use the exponential law to
write

e(γ+iµ)t = eγt · eiµt.
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This first factor is a real number and thus makes sense in the context of finding
solutions to our differential equation; however, we must employ some complex
analysis to obtain more information about the second factor. Recall that

eiθ = cos θ + i sin θ.

Thus, our solution becomes

e(γ+iµ)t = eγt(cosµt+ i sinµt).

Of course, this is disconcerting because we are looking for real function solutions.
Recall that when two functions are solutions of a homogenous equation, so is
their sum (and therefore their difference). Thus, the sum of the expressions
coming from the two roots (which differ by complex conjugation) is given as
follows:

e(γ+iµ)t + e(γ−iµ)t = eγt(cosµt+ i sinµt) + eγt(cosµt− i sinµt) = 2eγt cosµt.

Taking their difference, we obtain a different result:

e(γ+iµ)t − e(γ−iµ)t = 2ieγt sinµt.

From this, we can deduce that if the characteristic equation of a second order
linear homogenous equation has complex roots γ ± iµ, then the solutions will
be of the form

y(t) = c1e
γt cosµt+ c2e

γt sinµt.

Example. Consider the differential equation

y′′ + y′ + y = 0.

This has characteristic equation r2 + r + 1 and has complex roots

r = −1

2
± i
√

3

2
.

Thus, the general solution to this differential equation is given by

y(t) = c1e
−t/2 cos

(√
3t/2

)
+ c2e

−t/2 sin
(√

3t/2
)
.

Example. Here is an example where the real part of the complex roots are 0.
Consider the differential equation

y′′ + 9y = 0.

The characteristic equation for this is r2 + 9 and has complex roots r = ±3i.
Thus, the general solution to this differential equation is given by

y(t) = c1 cos 3t+ c2 sin 3t.
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