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A Note on Convergence

In class and in the workshop, we saw that the convergence of a sequence an
was phrased in a “for all - there exists” statement. Logically, these statements
can be a bit tricky, so this note will elucidate this very important concept.

Recall that a sequence an converges to A (written an → A) if for all ε > 0,
there exists an N such that for all n > N , the the following inequality holds:

|an − A| < ε.

In proofs, we are frequently in one of two scenarios when it comes to using
convergence:

(1) If we want to show that an → A, then we are given a ε > 0 (not
of our choosing), and our job is to choose an N and show that for all
n > N , the inequality |an − A| < ε holds.

(2) If we know that an → A, then for any ε > 0 of our choosing, we
are given back an N and we know that for all n > N , the inequality
|an − A| < ε holds.

In many cases, we must prove that a certain sequence converges knowing
that some other sequence converges. Thus, we must keep straight what we
can choose and what we cannot. In the below two proofs, we will utilize the
above two observations.
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Theorem. Show that if an → A, then c · an → c · A.

Discussion. Here, we know that an → A and we wish to show that can →
cA.
We want to show: can → cA. Thus, we will start our proof with “Let
ε > 0” (which is not of our choosing). Our job is to find an N such that for
all n > N , the inequality |can − cA| < ε.

We know: an → A. Thus, for any ε′ > 0 of our choosing, we will be auto-
matically given back an N ′ so that whenever n > N ′, then |an − A| < ε′.

What we’ll do: Since we are free to choose any ε′ > 0, let’s choose ε′ =
ε

|c|
. We will be given back an N ′ so that for all n > N ′, the inequality

|an − A| < ε′ =
ε

|c|
holds. So, the N that we choose will be this N ′ (thus

we will let N = N ′). We will show that for all n > N = N ′, then inequality
|can − cA| < ε.

Note: We will skip the situation where c = 0, which is the case when we
have the constant 0 sequence converging to 0].

Proof. Given ε > 0, we will find an N such that for all n > N , |can−cA| < ε.

Since an → A, then for ε′ =
ε

|c|
> 0, there exist an N ′ such that for all

n > N ′, the inequality |an − A| < ε′ =
ε

|c|
is true. Let N = N ′ Thus, for all

n > N = N ′, we have that

|an − A| < ε

|c|
.

Multiplying by |c| > 0 and distributing inside the absolute value gives |c(an−
A)| < ε and thus |can − cA| < ε, as desired. Thus, c · an → c ·A, as desired.
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Theorem. If an → A and bn → B, then an + bn → A + B.

Discussion. Here, we know that an → A and that bn → B. We wish to
show that an + bn → A + B.

We want to show: an + bn → A + B. Thus, we will start our proof with
“Let ε > 0” (which is not of our choosing). Our job is to find an N such
that for all n > N , the inequality |(an + bn)− (A + B)| < ε holds.

We know: an → A. Thus, for any εa > 0 of our choosing, there exists an Na

such that for all n > Na, the inequality |an − A| < εa holds.

We know: bn → B. Thus, for any εb > 0 of our choosing, there exists an Nb

such that for all n > Nb, the inequality |bn −B| < εb holds.

What we’ll do: Since we are free to choose εa and εb, let’s choose εa = εb =
ε

2
. Thus, we are given back an Na and Nb so that

· for all n > Na, |an − A| < εa =
ε

2
.

· for all n > Nb, |bn −B| < εb =
ε

2
.

Since we want to use both statements, we want simultaneously for n > Na

and for n > Nb. Thus, we will choose N = max{Na, Nb}. Then, we will use
the above, in conjunction with the triangle inequality, to conclude that for
all n > N = max{Na, Nb}, then the inequality |(an + bn) − (A + B)| < ε
holds.

Proof. Let ε > 0. Since an → A, then for εa = ε
2
> 0, there exists an Na

so that for all n > Na, the inequality |an − A| < ε
2

holds. Similarly, since
bn → B, then for εb = ε

2
> 0, there exists an Nb so that for all n > Nb,

the inequality |bn − B| < ε
2

holds. So, we choose N = max{Na, Nb}. So,
for n > N = max{Na, Nb} then both n > Na and n > Nb. Thus, we know
that |an − A| < ε

2
and that |bn − B| < ε

2
. Thus, for n > N , we can consider

|(an +bn)− (A+B) = |(an−A)+(bn−B)| along with the triangle inequality
and get that

|(an +bn)−(A+B) = |(an−A)+(bn−B)| ≤ |an−A|+ |bn−B| < ε

2
+
ε

2
= ε.

Thus, |(an + bn)− (A + B)| < ε, as desired. Thus, an + bn → A + B.
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