FRESHMAN SUMMER RESEARCH INSTITUTE
HOMEWORK SOLUTIONS - WEDNESDAY, JULy 13, 2011

Question 1. Prove the following statements about sets and subsets.

(a) If AcC C and B C C, show that AUB C C.
(

b) AUA=Aand ANA=A

)
)
(¢c) AUg=Aand AND=0.
(d) f ACc Band B C C, then A C C.

Solution 1la. We will show that AU B C C by showing that every element in A U B is also an element of
C. Let x € AU B. Then, x is an element of A or B. Either way, since A C C and B C C, x € C. Thus,
AUBCC.

Solution 1b. To show AU A = A, we will show that AUA C A and A C AU A. First, to show that
AUAC A, let z € AU A. Then, by definition z is an element of A or A is an element of A. Either way, x is
an element of A and thus AU A C A. Conversely, to show that A C AU A, if x € A, then it also an element
of A or A and thus an element of AU A. Thus, we may conclude that AU A = A.

A similar proof show that AN A = A just be replacing every “or” with “and”.

Solution 1c. To show that AU @ = A, we will show that AU@ C A and A C AU @. First, to show that
AUug C A, if z € AU @, then z is an element of A or the empty set. Clearly, x cannot be in the empty
set since @ contains no elements. Thus, it must be true that z € A. So, AU @ C A. Conversely, to show
that A C AU @, we note that it is always true that a set is a subset of the “larger” union A U @. Thus, we
conclude that AU @ = A.

To show that AN @ = &, we will show that AN @ C @ and @ C AN @. First, to show that AN @ C &,
let x € AN@. Then, z is in A and @. Since = € &, x does not exist (since @ contains no elements). So,
since no such z exists, A N @ contains no elements and is thus the empty set @. For the other inclusion
@ C AN, I is a subset of every set trivially. Thus, we conclude that A N @ = &.

Solution 1d. To show that A C C, we must show that if x € A, then x € C. To this end, let x € A. Since
A C B, we this implies that = € B. Furthermore, since B C C, we conclude that also x € C. Thus, we have
shown that any element z € A is also an element of C. Thus, A C C.

Question 2. Note that
1=1

1—4=—(1+2)
1-44+9=1+2+3
1—449-16=—(14+2+3+4)

Guess the general law (using n’s) suggested by the above and prove it using induction.

Solution 2. The general statement is that

n

Z(_l)k+lk2 _ (_1)n+1 En: k,
k=1

k=1

which we will show is true for all n > 1.



First, we check the base case of when n = 1. In this case, we have

1

Z(_l)k+1k2 _ (_1)1+1 Z k,
k=1

k=1

which is equivalent to the statement
1?=1

3

a true statement.
To fulfill our inductive step, we assume that the A(n) statement
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is true and use it t prove that A(n+ 1) is true as well. To ease computations, we will break this up into the
cases when n is even and when n is odd.
We begin with the case when n is even. In this case, our inductive assumption may be written

1—-449—--—n?2=—142+3+---+n).
Adding (n + 1)? to both sides of the equation yields
1—449——n? 4+ (n+1)2=-1+2+34+---+n)+(n+1>2%
Rewriting the right-hand side using our power sum formula, we get

1
1—4+97~-7712+(n+1)2:—M

Continuing our manipulations of the right-hand side, we obtain

L=44+9— —n?+(n+1)? = (m+1) (n+1-3)
n
1—449— - —n>+(n+1)%=(n+1) (n+1 5)
2 2 —
14+9-o-n2+(n+1)2(n+1)<n+2n)
1)+1
1—4+9—---—n2+(n+1)2:(n+1)<((n+2)+>.
n+1
We notice that the right-hand side is equal to the power sum formula for Z k. Thus, we have deduced our
k=1
A(n + 1) statement
1—4+9—-- —n’+(n+1)? Zk

The case where n is odd is almost identical, but with opposite signs, so it is omitted here. Thus, we

conclude by induction that
n

Z(—l)k“kz _ (71)n+1 i k,
k=1

k=1

is true for all n > 1.




Question 3. Note that

1 1
1+-=2—=

*3 2

1 1 1
14=-4+-=2—=
taty 4
+1+1+1 1
2 4 8 8

Guess the general law (using n’s) suggested by the above and prove it using induction.

Solution 3. The general pattern is

for n > 0. We will prove this statement using induction.
As our base case, we see that when n = 0, we have the statement

0 1 1
Y-t

k=0
is equivalent to
I 9 1
I

which is obviously true.
Next, we perform our inductive step. That is, our inductive assumption states that we assume that A(n)
is true and prove that A(n + 1) is also true. So, we assume that

n 1 1
2 E=2"m

k=0
for some n and we want to show that
n+1
I 1
Z 27 =2- on+1 :
k=0

To prove the statement A(n + 1), we will begin with the left-hand side of the statement and reach the
right-hand side while using our inductive assumption. So,

n+1 n
1 1 1 1 1 2 1 1
;%yﬁ:;%%+2ml:(2_%>+2Mﬂ:2_2m4+2m4:2_QMT

Thus, we have used our assumption that A(n) is true to show that A(n+ 1) is also true. Thus, by induction
we have proven that the statement
1 1
dE=2"m

k=0

hold for every n > 0.

Question 4.

(a) Prove the following statement using induction:

B2 4334 40 =(142+3+--+n)°.



n n
(b) Use your previously proven Sum of Powers formulae for Zk and Zk3 to verify that the above
k=1 k=1
statement is true.

Solution 4a. Our statement A(n) is that
n n 2
>e- (3
k=1 k=1
for n > 1 First, we begin with our inductive basis. When n = 1, we have the statement
1 1 2
i (3
k=1 k=1

which is equivalent to the statement
13 — 127

which is trivially true.
Next, we assume that the statement A(n) is true for some n and show that it is true for A(n +1). That
is, we wish to use the inductive assumption of

S ()
to show that
n+1 n+1 2
> k= (Z k) :
k=1 k=1
To do this, we will begin with the left-hand side and find that it is eventually equal to the right-hand side.

n+1 n
SR =YK+ (nt1)° Zk3 + (n+1)(n+1)2 Zk3+nn+1)+(n+1)2=
= =1

k=1

Xn:k3+2(n+l)n(n;1) +(n+1)2 Zk5+2n+1<2k> + (n+1)2
k=1

(gk> +2(n+1) <Zk> + (n+1)? (Z’” n+1 >2:<§k>2.

Thus, we have used our inductive assumption that A(n) is true to prove that A(n + 1) is also true. Thus,

by induction,
n n 2
> (3)
k=1 k=1

holds for all n > 1.

Solution 4b. Recall that in a previous workshop, we proved that

~, _n(n+1) 5 nP(n+1)°
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Thus, it is clear that




Question 5. The following will demonstrate that bijection is an equivalence relation on the class of sets.

e REFLEXIVITY: Show that there exists a bijection f: 5 — S.
e SYMMETRY: If there exists a bijection f :S — T, then there exists a bijection g : T" — S.

e TRANSITIVITY: If there exist bijections f : S — T and g : T — R, then there exists a bijection
h:S— R.

Solution 5. To show that there exists a bijection f : S — S, consider the function f(s) = s, the so-called
identity map. Clearly, this map is both injective and surjective (every identity map has these properties),
so this map is a bijection.

To prove symmetry, we must show that if f : S — T is a bijection, there there exists a bijection g : T — S.
Since f : S — T is a bijection, it is both injective and surjective. Since f is surjective, we know that for
every t € T, there exists an s € S such that f(s) = ¢. Since f is also injective, we know that this is the
only s € S such that f(s) =t. So, we define g : T'— S by g(t) is the element s such that f(s) = t; that
is, the image of ¢ under the function g is the pre-image of ¢ under the function f. Since f is surjective, we
can use this definition of g for every t € T (since every ¢ has a pre-image). Furthermore, since f is injective,
g : T — S maps to only one s.

The function g : T — S is surjective since every s € S has a pre-image ¢ (which is its image under f).
To show that g : T'— S is injective, we will show that whenever g(¢1) = g(t2), then ¢; = to. We know that
g(t1) = s1 such that f(s;) = t; and similarly that g(t2) = s2 such that f(s2) = ta. Thus, since g(t1) = g(t2),
we know that s; = so. Since f is a function f(s1) = f(s2), which is equivalent to t; = t5. Thus, g is injective
as well.

We have already shown transitivity in a previous workshop, where we showed that the composition map
fog:S — T is bijective if both f:S — T and g : T'— R are bijective. So, we only need to let h = fog as
we are done.

Thus, since all three of these properties hold, we say that bijection is an equivalence relation on the class
of all sets.



