
Freshman Summer Research Institute
Homework Solutions - Wednesday, July 13, 2011

Question 1. Prove the following statements about sets and subsets.

(a) If A ⊂ C and B ⊂ C, show that A ∪B ⊂ C.

(b) A ∪A = A and A ∩A = A.

(c) A ∪∅ = A and A ∩∅ = ∅.

(d) If A ⊂ B and B ⊂ C, then A ⊂ C.

Solution 1a. We will show that A ∪ B ⊂ C by showing that every element in A ∪ B is also an element of
C. Let x ∈ A ∪ B. Then, x is an element of A or B. Either way, since A ⊂ C and B ⊂ C, x ∈ C. Thus,
A ∪B ⊂ C.

Solution 1b. To show A ∪ A = A, we will show that A ∪ A ⊂ A and A ⊂ A ∪ A. First, to show that
A∪A ⊂ A, let x ∈ A∪A. Then, by definition x is an element of A or A is an element of A. Either way, x is
an element of A and thus A∪A ⊂ A. Conversely, to show that A ⊂ A∪A, if x ∈ A, then it also an element
of A or A and thus an element of A ∪A. Thus, we may conclude that A ∪A = A.

A similar proof show that A ∩A = A just be replacing every “or” with “and”.

Solution 1c. To show that A ∪∅ = A, we will show that A ∪∅ ⊂ A and A ⊂ A ∪∅. First, to show that
A ∪ ∅ ⊂ A, if x ∈ A ∪ ∅, then x is an element of A or the empty set. Clearly, x cannot be in the empty
set since ∅ contains no elements. Thus, it must be true that x ∈ A. So, A ∪ ∅ ⊂ A. Conversely, to show
that A ⊂ A ∪∅, we note that it is always true that a set is a subset of the “larger” union A ∪∅. Thus, we
conclude that A ∪∅ = A.

To show that A ∩∅ = ∅, we will show that A ∩∅ ⊂ ∅ and ∅ ⊂ A ∩∅. First, to show that A ∩∅ ⊂ ∅,
let x ∈ A ∩ ∅. Then, x is in A and ∅. Since x ∈ ∅, x does not exist (since ∅ contains no elements). So,
since no such x exists, A ∩ ∅ contains no elements and is thus the empty set ∅. For the other inclusion
∅ ⊂ A ∩∅, ∅ is a subset of every set trivially. Thus, we conclude that A ∩∅ = ∅.

Solution 1d. To show that A ⊂ C, we must show that if x ∈ A, then x ∈ C. To this end, let x ∈ A. Since
A ⊂ B, we this implies that x ∈ B. Furthermore, since B ⊂ C, we conclude that also x ∈ C. Thus, we have
shown that any element x ∈ A is also an element of C. Thus, A ⊂ C.

Question 2. Note that
1 = 1

1− 4 = −(1 + 2)

1− 4 + 9 = 1 + 2 + 3

1− 4 + 9− 16 = −(1 + 2 + 3 + 4)

Guess the general law (using n’s) suggested by the above and prove it using induction.

Solution 2. The general statement is that

n∑
k=1

(−1)k+1k2 = (−1)n+1
n∑

k=1

k,

which we will show is true for all n ≥ 1.
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First, we check the base case of when n = 1. In this case, we have

1∑
k=1

(−1)k+1k2 = (−1)1+1
1∑

k=1

k,

which is equivalent to the statement
12 = 1,

a true statement.
To fulfill our inductive step, we assume that the A(n) statement

n∑
k=1

(−1)k+1k2 = (−1)n+1
n∑

k=1

k

is true and use it t prove that A(n+ 1) is true as well. To ease computations, we will break this up into the
cases when n is even and when n is odd.

We begin with the case when n is even. In this case, our inductive assumption may be written

1− 4 + 9− · · · − n2 = −(1 + 2 + 3 + · · ·+ n).

Adding (n + 1)2 to both sides of the equation yields

1− 4 + 9− · · · − n2 + (n + 1)2 = −(1 + 2 + 3 + · · ·+ n) + (n + 1)2.

Rewriting the right-hand side using our power sum formula, we get

1− 4 + 9− · · · − n2 + (n + 1)2 = −n(n + 1)

2
+ (n + 1)2.

Continuing our manipulations of the right-hand side, we obtain

1− 4 + 9− · · · − n2 + (n + 1)2 = (n + 1)
(
n + 1− n

2

)
1− 4 + 9− · · · − n2 + (n + 1)2 = (n + 1)

(
n + 1− n

2

)
1− 4 + 9− · · · − n2 + (n + 1)2 = (n + 1)

(
2n + 2− n

2

)
1− 4 + 9− · · · − n2 + (n + 1)2 = (n + 1)

(
((n + 1) + 1

2

)
.

We notice that the right-hand side is equal to the power sum formula for

n+1∑
k=1

k. Thus, we have deduced our

A(n + 1) statement

1− 4 + 9− · · · − n2 + (n + 1)2 =

n∑
k=1

k.

The case where n is odd is almost identical, but with opposite signs, so it is omitted here. Thus, we
conclude by induction that

n∑
k=1

(−1)k+1k2 = (−1)n+1
n∑

k=1

k,

is true for all n ≥ 1.
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Question 3. Note that

1 +
1

2
= 2− 1

2

1 +
1

2
+

1

4
= 2− 1

4

1 +
1

2
+

1

4
+

1

8
= 2− 1

8

Guess the general law (using n’s) suggested by the above and prove it using induction.

Solution 3. The general pattern is
n∑

k=0

1

2k
= 2− 1

2n

for n ≥ 0. We will prove this statement using induction.
As our base case, we see that when n = 0, we have the statement

0∑
k=0

1

2k
= 2− 1

20

is equivalent to
1

1
= 2− 1

1
,

which is obviously true.
Next, we perform our inductive step. That is, our inductive assumption states that we assume that A(n)

is true and prove that A(n + 1) is also true. So, we assume that

n∑
k=0

1

2k
= 2− 1

2n

for some n and we want to show that
n+1∑
k=0

1

2k
= 2− 1

2n+1
.

To prove the statement A(n + 1), we will begin with the left-hand side of the statement and reach the
right-hand side while using our inductive assumption. So,

n+1∑
k=0

1

2k
=

n∑
k=0

1

2k
+

1

2n+1
=

(
2− 1

2n

)
+

1

2n+1
= 2− 2

2n+1
+

1

2n+1
= 2− 1

2n+1
.

Thus, we have used our assumption that A(n) is true to show that A(n+ 1) is also true. Thus, by induction
we have proven that the statement

n∑
k=0

1

2k
= 2− 1

2n

hold for every n ≥ 0.

Question 4.

(a) Prove the following statement using induction:

13 + 23 + 33 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)
2
.
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(b) Use your previously proven Sum of Powers formulae for

n∑
k=1

k and

n∑
k=1

k3 to verify that the above

statement is true.

Solution 4a. Our statement A(n) is that

n∑
k=1

k3 =

(
n∑

k=1

)2

for n ≥ 1 First, we begin with our inductive basis. When n = 1, we have the statement

1∑
k=1

k3 =

(
1∑

k=1

k

)2

,

which is equivalent to the statement
13 = 12,

which is trivially true.
Next, we assume that the statement A(n) is true for some n and show that it is true for A(n + 1). That

is, we wish to use the inductive assumption of

n∑
k=1

k3 =

(
n∑

k=1

k

)2

to show that
n+1∑
k=1

k3 =

(
n+1∑
k=1

k

)2

.

To do this, we will begin with the left-hand side and find that it is eventually equal to the right-hand side.

n+1∑
k=1

k3 =

n∑
k=1

k3 + (n + 1)3 =

n∑
k=1

k3 + (n + 1)(n + 1)2 =

n∑
k=1

k3 + n(n + 1)2 + (n + 1)2 =

n∑
k=1

k3 + 2(n + 1)n
(n + 1)

2
+ (n + 1)2 =

n∑
k=1

k3 + 2(n + 1)

(
n∑

k=1

k

)
+ (n + 1)2 =

(
n∑

k=1

k

)2

+ 2(n + 1)

(
n∑

k=1

k

)
+ (n + 1)2 =

(
n∑

k=1

k + (n + 1)

)2

=

(
n+1∑
k=1

k

)2

.

Thus, we have used our inductive assumption that A(n) is true to prove that A(n + 1) is also true. Thus,
by induction,

n∑
k=1

k3 =

(
n∑

k=1

)2

holds for all n ≥ 1.

Solution 4b. Recall that in a previous workshop, we proved that

n∑
k=1

k =
n(n + 1)

2
and

n∑
k=1

k3 =
n2(n + 1)2

4
.

Thus, it is clear that
n∑

k=1

k3 =
n2(n + 1)2

4
=

(
n(n + 1)

2

)2

=

(
n∑

k=1

k

)2

.

4



Question 5. The following will demonstrate that bijection is an equivalence relation on the class of sets.

• Reflexivity: Show that there exists a bijection f : S → S.

• Symmetry: If there exists a bijection f : S → T , then there exists a bijection g : T → S.

• Transitivity: If there exist bijections f : S → T and g : T → R, then there exists a bijection
h : S → R.

Solution 5. To show that there exists a bijection f : S → S, consider the function f(s) = s, the so-called
identity map. Clearly, this map is both injective and surjective (every identity map has these properties),
so this map is a bijection.

To prove symmetry, we must show that if f : S → T is a bijection, there there exists a bijection g : T → S.
Since f : S → T is a bijection, it is both injective and surjective. Since f is surjective, we know that for
every t ∈ T , there exists an s ∈ S such that f(s) = t. Since f is also injective, we know that this is the
only s ∈ S such that f(s) = t. So, we define g : T → S by g(t) is the element s such that f(s) = t; that
is, the image of t under the function g is the pre-image of t under the function f . Since f is surjective, we
can use this definition of g for every t ∈ T (since every t has a pre-image). Furthermore, since f is injective,
g : T → S maps to only one s.

The function g : T → S is surjective since every s ∈ S has a pre-image t (which is its image under f).
To show that g : T → S is injective, we will show that whenever g(t1) = g(t2), then t1 = t2. We know that
g(t1) = s1 such that f(s1) = t1 and similarly that g(t2) = s2 such that f(s2) = t2. Thus, since g(t1) = g(t2),
we know that s1 = s2. Since f is a function f(s1) = f(s2), which is equivalent to t1 = t2. Thus, g is injective
as well.

We have already shown transitivity in a previous workshop, where we showed that the composition map
f ◦ g : S → T is bijective if both f : S → T and g : T → R are bijective. So, we only need to let h = f ◦ g as
we are done.

Thus, since all three of these properties hold, we say that bijection is an equivalence relation on the class
of all sets.
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