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The banjo’s floating bridge, string break angle, and flexible drumhead all contribute

to substantial audio range frequency modulation. From the world of electronic music

synthesis, it is known that modulating higher frequency sounds with lower acoustic

frequencies leads to metallic and bell-like tone. The mechanics of the banjo does just

that quite naturally, modulating fundamentals and harmonics with the motion of the

bridge. In technical terms, with a floating bridge, string stretching is first order in

bridge motion, in contrast to it being second order in the vibration amplitude of the

strings.
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String Stretching, Frequency Modulation, and Banjo Clang

I. WHAT IS A BANJO?

A banjo is a drum with strings mounted on a neck. With minor caveats, that’s what makes

it a banjo. So that’s what must be responsible for its characteristic sound. A reasonable

question then is: what is it in the mechanics of sound production by drum and strings that

distinguishes banjo sound from other stringed instruments? While trying to understand the

mechanics of tailpiece and break angle, I came to understand some aspects of the workings

of drumhead and floating bridge which may well be a partial answer to that question.

A. Needle Points of Sound

Pete Seeger liked to say, “This banjo can do things that a guitar can’t do. You get these

needlepoints of sound...” (The “needlepoints” metaphor appears in many interviews in his

later life.)

In 1865, Mark Twain wrote, “...When you want genuine music — music that will come

right home to you like a bad quarter, suffuse your system like strychnine whisky, go right

through you like Brandreth’s pills, ramify your whole constitution like the measles, and

break out on your hide like the pin-feather pimples on a picked goose, — when you want all

this, just smash your piano, and invoke the glory-beaming banjo!”

I’m not in their league or even in the Minors, but “clang” is a word I use to describe the

ideal banjo sound, at least for bluegrass or Scruggs-style playing.

Besides clang in general, there’s a particular clang that fascinates me. It appears only

occasionally in the picking of bluegrass greats, and I’ve tried hard to figure out just what

it is. I concluded that it comes from the open D 1st string when it’s used as a drone (i.e.,

with the melody and chording appearing on the inner strings). So it appears at relatively

random times within the ever-changing rhythm of three-finger rolls, sometimes ringing out

with a conspicuously clear clang. To me, it sounds like a steel hammer striking a cold steel

chisel. As best I can tell, it needs a strong pick, a bit further from the bridge than normal

playing. My clang hero is J.D. Crowe.
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B. Tailpiece and Break Angle Sound

I built/assembled two banjos that should have sounded the same — and they almost did.

They were open-backs for frailing, but one had a metallic, slightly more piercing sound in

the attack. The only obvious difference between the two instruments was the tailpiece, an

item to which I had heretofore not paid much attention. The minimal, 19th Century-style

“No-Knot” tailpiece gave a very small break angle of the strings over the bridge (about 6o)

and was the plunkier of the two. The other was a standard Deering Goodtime tailpiece,

which reaches farther toward the bridge and gives a break angle of about 15o. It gave the

more metallic attack. (These two tailpieces are in the photo on the title page.)

It is commonly offered advice: Choose a tailpiece or set an adjustable tailpiece to

get a sharper break angle if you want more “snap” or “ping.” For example, Roger Simi-

noff wrote in his book on set-up and more recently in Banjo NewsLetter, July 2010,

that sharp angles give “good brightness and ‘snap,’ ” versus smaller angles, which give

“warm, round tone” (https://banjonews.com/2010-07/more“˙string“˙break“˙angles.html).

And Barry Hunn wrote for the Deering March 21, 2014 blog that sharper angles make

“the sound a bit sharper or snappier,” while smaller angles give “mellow, warm tone”

(http://blog.deeringbanjos.com/6-string-banjo-set-ups). One is also warned that tightening

down too hard on the tailpiece will ultimately have the effect of limiting the range of bridge

motion and perceptibly decreasing the overall sound volume.

Hear the No-Knot tailpiece (click here if blue box is visible) or http://www.its.caltech.edu/

∼politzer/FM/no-knot-stinsons2.mp3 . And, on the same banjo (same set-up, microphone,

room arrangement, etc.) hear the Goodtime tailpiece (click here if box is visible) or go to

http://www.its.caltech.edu/∼politzer/FM/goodtime-stinsons2.mp3. On the fifteen year old

Goodtime banjo being played there, the difference is more subtle than it was with the 55
8

′′

deep pot shown in the title page photo. Also, good speakers help. But to my ear, the

No-Knot gives a thumpier sound, while the Goodtime tailpiece has more sparkle.

I learned the tune from Mary Cox (http://www.maryzcox.com), who explains she learned

it from dulcimer players, who, in turn, know it from an old fiddle recording, whence it’s

present name, “John Stinson’s #2.”

https://banjonews.com/2010-07/more_string_break_angles.html
http://blog.deeringbanjos.com/6-string-banjo-set-ups
http://www.its.caltech.edu/~politzer/FM/no-knot-stinsons2.mp3
http://www.its.caltech.edu/~politzer/FM/goodtime-stinsons2.mp3
http://www.maryzcox.com
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C. Tailpiece Mechanics Challenge

Many people comment that an increase in break angle increases the down-pressure of the

strings onto the bridge, and that’s certainly true. However, the physics of how that might

effect the sound was obscure. I could not make sense of the simple statement that the higher

pressure increases the efficiency of high frequency transfer from the strings to the bridge.

It was also unclear that banjo tone adjustment was just a matter of turning up the treble.

Also, since one retunes the strings after adjusting the break angle, the audible “snap” didn’t

seem to be be the physical snap of the plucked string because it is always tuned to the same

tension.

However, the sharper break angle does increase the amount that the strings have to stretch

while the bridge moves up and down. This string stretching modulates string tension. And

this produces pitch and harmonic frequency modulation. I realized that this variation in

string tension might not be negligible. That is in contrast to the tiny variation in tension

inherent in the transverse vibration along any plucked string,

The tension variation from bridge motion is a non-linear effect. One consequence is that

care must be used when discussing frequencies and Fourier components. So keep in mind

that it is actually always the total motion of the bridge that modulates the string tensions.

That total bridge motion is not a smooth sinusoidal function of time. And, no matter

what harmonic of a particular string we are considering, it will be modulated by the total

bridge motion, which generally has a strong component of the fundamental frequencies of

the plucked strings, as well as significant amounts of higher ones.

D. Acoustic Frequency Modulation

While trying to figure out what happens to the sound when you modulate tension while

a string is vibrating, I stumbled on the early literature on acoustic frequency modulation by

pioneers of electronic music synthesizers.

In 1973, John Chowning published a remarkable insight (The Synthesis of Complex Audio

Spectra by Means of Frequency Modulation, J. Audio Eng. Soc. 21, 7, 1973, digital version

here or here:

https://ccrma.stanford.edu/sites/default/files/user/jc/fmsynthesispaperfinal 1.pdf). In FM

https://ccrma.stanford.edu/sites/default/files/user/jc/fmsynthesispaperfinal_1.pdf
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radio, the carrier radio frequency is modulated with the audio frequencies of the desired

signal. Carrier and audio frequencies are many orders of magnitude apart. Chowning found

that modulating audio frequencies with lower audio frequencies yields sounds that are far

more “realistic” than the flat, early electronic sounds of pure sine waves. The abstract math

is the same as for FM radio signals: the modulation produces “side bands” around the high

frequency. The bands span a width in frequency that is of order of the modulating frequency.

(A nice, classic review for the sound case was given by Bill Schottstaedt: An Introduction

to FM, https://ccrma.stanford.edu/software/snd/snd/fm.html.)

Chowning is a jack of all trades but primarily a musician and composer, with an interest

in electronic music and psychoacoustics. The acoustic FM idea became the basis of a patent,

which was then licensed to Yamaha. It proved to be one of Stanford University’s all-time

biggest money makers. (Chowning was on the Stanford music faculty and co-founder in 1975

of Stanford’s CCRMA [Center for Computer Research in Music and Acoustics]). The Stan-

ford/Yamaha R&D collaboration produced the first generation of electronic instruments that

made sounds that were recognizable (at least vaguely) as particular, standard instruments.

In his paper, Chowning mentions that for struck “bell-like” sounds, the amplitude of the

modulation relative to the central frequency should be proportional to the overall decaying

amplitude. (That’s precisely what the real banjo modulation amplitude does, coming from

stretching and string tension modulation due to bridge motion.) Schottstaed writes, “As

the index sweeps upward, energy is swept gradually outward into higher order side bands;

this is the originally exciting, now extremely annoying ‘FM sweep’. The important thing

to get from these Bessel functions is that the higher the index, the more dispersed the

spectral energy — normally a brighter sound.” “Index” is the relative frequency range of

the modulation. The central frequency νc is modulated at frequency νm, i.e., we make the

FIG. 1. a frequency modulated signal (solid curve) versus time; dots are the modulation

https://ccrma.stanford.edu/software/snd/snd/fm.html
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frequency a little bigger and a little smaller at a rate specified by νm and by an amount whose

maximum is the index. In FIG.1, the index is 0.4νc and νm = 0.04νc. This is also some-

times called phase modulation. However, I believe that the term “frequency modulation” is

conceptually clearer in the present discussion of string stretching.

“Bell-like,” “originally exciting, now extremely annoying,” and “brighter sound”... I

figured I was on the right track for deconstructing banjo sound.

A significant lesson that came out of this era of sound synthesis R&D is a much greater

appreciation of the impact of temporal structure on what we hear. Frequency spectrum

does not uniquely determine perceived tone. A trivial example is the fact that a simple clap

and white noise can have the same spectrum, but they sound nothing like each other. It is

also true that our perception of a musical sound lasting just a second or two will depend on

the shape in time of its overall amplitude envelope. That’s a sensitivity to changes on the

scale of tenths or hundredths of a second. More surprising was the realization that perceived

tone depends on the relative timing structure of various frequency components on the scale

of thousandths of a second. So, hearing on time scales in the range of auditory oscillation

periods is not just a matter of frequency spectrum. We are sensitive to the actual time

sequence.

Frequency modulation gives side bands in the frequency spectrum. But an important

feature of frequency modulation is that the resulting signal as a function of time is as smooth

as can be, consistent with that spectrum. Those same frequency components, with the same

strengths, can be assembled to give a signal with much greater time-to-time variation. This is

just a repeat of the clap-versus-white-noise story but all within the scale of a few thousandths

of a second. The surprise is that we perceive it. (It is really only surprising if you thought

you understood the neuro- and cell biology of hearing.)

E. Clang from Exaggerated Bridge Motion

Here is a sound sample of “clang” that is produced from real banjo tremolo that is sped

up digitally into the acoustic frequency range. The banjo has a relatively loose 121
2

′′
skin

head and a break angle of only 31
2

o
. I pluck the 4th string, tuned down to F(2), i.e., 87

Hz. In the sound sample, there are three plain plucks, followed by six more with a tremolo

produced by pushing down repeatedly on the head near the bridge. The tremolo frequency
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is about 6 Hz. Those are the first nine plucks. That same sound recording is then played

again at 3× the original speed. That puts the pitch around C(3) and the modulation

around 18 Hz. And finally, the original recording is played at 6× its speed. So the pitch

is around C(4). The modulation, at around 36 Hz, is barely into the audio range. Listen:

http://www.its.caltech.edu/˜politzer/FM/clang.mp3 .

Moving the bridge up and down modulates the string’s vibrational frequencies by stretch-

ing the strings. And, when that modulation is sped up into the acoustic range, the wobble

disappears and is replaced by a metallic timbre.

F. Synthesized Sound Samples

This section contains some computer-synthesized sounds. Simple samples are easy to pro-

duce with modern math software. I mostly used Mathematica R©. It allows you to construct

your own functions of time and then listen to them. The goal is to give a clearer sense of

how and why frequency modulations are relevant to timbre. Of course, it doesn’t sound like

a banjo. A huge number of crucial features are missing. I start with pure sinusoidal tones,

which are not the sounds of plucked strings on any real instruments. And the modulation is

purely sinusoidal — also not what happens on a banjo. Real plucked string sound contains

many strong, high harmonics. These decay at different rates. Also, the real banjo bridge

motion has its own complex, non-sinusoidal time structure. But these samples provide an

opportunity to describe in words what’s going on. That might help as orientation before

getting into math and geometry details.

First, here is a pure sine wave D(5); that’s 587 Hz, an octave above a common open 1st

string tuning: http://www.its.caltech.edu/˜politzer/FM/pureD5.wav

Here is the sine wave D(5) modulated in frequency at 196 Hz [a G(3)] with a maximum

fractional excursion in frequency of 0.033:

http://www.its.caltech.edu/˜politzer/FM/FM-D5.wav That means that the “instanta-

neous” frequency of the signal is smoothly varying between 606 Hz and 567 Hz and back

(i.e., about ±3%) at 196 times a second, while the amplitude of the signal is constant.

“Instantaneous frequency” could be defined as follows: Take a single cycle of the signal (up,

down, and back) and find the closest pure sine wave approximation to that signal. That

pure sine wave would have the instantaneous frequency. Perhaps you can recognize in this

http://www.its.caltech.edu/~politzer/FM/clang.mp3
http://www.its.caltech.edu/~politzer/FM/pureD5.wav
http://www.its.caltech.edu/~politzer/FM/FM-D5.wav
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simple sample just a bit of the “glory-beaming” sound, especially if you turn up the volume.

There are other ways that D(5) could be modified. I present some here to emphasize how

remarkable, in contrast, audio range frequency modulation really is.

1) Simply add a weaker G(3) signal to the D(5). In particular, in this sample the G(3) ampli-

tude is 25% the size of the D(5) amplitude: http://www.its.caltech.edu/˜politzer/FM/D5-

G3.mp3. (Tiny speakers might require turning up the volume to hear the lower frequencies.)

2) Add 606 Hz and 567 Hz to the pure D(5), all with equal amplitude:

http://www.its.caltech.edu/˜politzer/FM/D5plus-minus-sss.mp3. Here we get beats at the

difference frequencies. If the D(5) is shifted by 90o in phase, i.e., advanced in time by 1.7

thousandths of a second relative to the other two, the frequency spectrum is identical to the

spectrum of the previous sound, but the sound itself is different:

http://www.its.caltech.edu/˜politzer/FM/D5plus-minus-scs.mp3.

3) Frequency tremolo: http://www.its.caltech.edu/˜politzer/FM/D5tremolo.wav. In terms

of math formulas, this is also frequency modulation. However, to hear it as a tremolo, the

modulation frequency must be well below the audible range. In this case it’s about 10 per

second. The frequency modulation is again ±3% of the 587 Hz.

An influential paper by Risset and Matthews in 1969 [Physics Today 22(2), 23 (1969)]

emphasized that then new computers could be used to understand sound in ways never

possible before. One aspect discussed in that paper was the “envelope” of particular musical

sounds. On a scale shorter than the duration of the note but longer than the period of

individual acoustic oscillations, how does the volume evolve? Different instruments and

other sound sources are quite different. For example, a typical pluck has a sharp onset

followed by an exponential decay. So I use the function t0.05exp(−8t) (with t in seconds) to

modify the amplitude.

A pure 587 Hz thus modified sounds as follows:

http://www.its.caltech.edu/˜politzer/FM/pureD5pluck.wav

Now modulate that 587 Hz signal with 196 Hz but let the index or range in Hz of that

modulation also vary at the rate given by the overall amplitude envelope. That makes

sense because the physical frequency modulation due to string stretching decreases with

decreasing amplitude: http://www.its.caltech.edu/˜politzer/FM/FM-D5pluck. (OK. This

sounds more like a toy electronic piano than a banjo, but I stick with the contention that it’s

in the right direction to begin to account for the characteristic sound of the plucked banjo.

http://www.its.caltech.edu/~politzer/FM/D5-G3.mp3
http://www.its.caltech.edu/~politzer/FM/D5-G3.mp3
http://www.its.caltech.edu/~politzer/FM/D5plus-minus-sss.mp3
http://www.its.caltech.edu/~politzer/FM/D5plus-minus-scs.mp3
http://www.its.caltech.edu/~politzer/FM/D5tremolo.wav
http://www.its.caltech.edu/~politzer/FM/pureD5pluck.wav
http://www.its.caltech.edu/~politzer/FM/FM-D5pluck.wav
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Again, you might have to turn up the volume to hear the ring.)

Historically, the focus on frequency modulation was one of first steps in the effort produce

traditional musical sounds with electronic components. A lot of trial and error went into

assembling parts that together were convincing. With the enormous growth of computer

speed and memory in the interim, a totally new kind of synthesizer has come into being.

These days, if you want a keyboard to sound like a cello, you can build a machine with a

huge bank of recordings of real cello sound clips that the keyboard can access. On the other

hand, you could build a viola organista following Leonardo Da Vinci’s sketches. (Actually,

that’s been done at least a few times over the centuries; it’s well worth tracking down the

on-line videos.)

II. THE GENERAL IDEA & A VARIETY OF CONSEQUENCES

A. Break Angle & String Stretch Geometry

“Floating bridge” refers to the bridge’s relation to the strings. Specifically, the floating

bridge goes up and down relative to the ends of the strings, which are fixed to the rim and

the neck. That is to be contrasted with a bridge and saddle, as on a flat-top guitar, where

the ends of the strings go up and down with the bridge.

“Break angle” is the angle the strings make going over the bridge. It is determined by

the bridge height and tailpiece geometry, as roughly illustrated in FIG. 2

bridge

neck

string

rim

tailpiecehead

to nut

break angle

FIG. 2.

String tension is determined by scale length (nut to bridge), string gauge (or density),

and chosen pitch of the open string. To a good approximation, the tension is uniform from

the tuners to where the string is anchored on the tailpiece. The string tension produces
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a downward force on the bridge that increases as the break angle increases. In particular,

if T is the tension and θ is the angle, the downward force on the tailpiece side is T sin θ,

a function that is zero when θ is zero and increases in proportion to θ as θ increases (at

least over the relevant range of angles). However, when the bridge is at rest, this is exactly

countered by an equal upward force from the tension in the distorted head.

Is it a big deal if these forces are large? If the banjo is held horizontally, there are also

about 1400 lbs of air weighing down on the head as well. This weight doesn’t effect the head

motion because there is an equal force of the air below pushing up.

So what’s different about the string break-angle down force? The head adjusts itself to

provide an exactly equal upward force on the bridge when it is at rest. When the string

vibrations cause the bridge to move up and down, the break angle changes slightly. In

particular, when the bridge moves up relative to the rim, the break angle increases, and so

does the downward force of the strings on the bridge. At the same time, when the bridge

moves up, the head break angle decreases, and so does the upward force of the head on the

bridge. Hence, the forces on the bridge are unbalanced, and the net force is down. Therefore,

this configuration supplies a “restoring” force to the bridge up-and-down motion, pushing

it back toward equilibrium.

fixed

M in both cases

same springs and mass

M

fixed

FIG. 3. With ideal springs, the restoring force and oscillation frequency of the central mass is

independent of the equilibrium compression.

FIG. 3 gives a cartoon description of the bridge, M , held in place by the force of springs

from above and below. Shown is the equilibrium or resting position, where the forces of

the two springs cancel. When the bridge is displaced, the springs’ forces are unequal, and
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their sum pushes the bridge back towards equilibrium. If the fixed ends of the springs are

held closer together, each spring’s force is greater than before. However, if they are ideal

springs (each providing a force proportional to its stretch or compression), the net force of

the two is the same as it was with the fixed ends in the original wider position — not only at

equilibrium but also at any position displaced away from equilibrium. Hence, the resulting

frequency of free oscillations is also the same as it was with the original wider position.

Every oscillating, macroscopic physical system has a region about its equilibrium position

for which the restoring forces are well-approximated by ideal springs. It is always worth

asking how large that region is and whether the excursions from equilibrium are small

enough that we stay within that region. In almost all acoustic situations, that is the case,

and the spring-like behavior gives a faithful representation of the motion. However, the

present situation is one in which the various parts conspire to magnify a non-spring-like

(aka non-linear) behavior. Even if the string stretching along its length is itself well within

the linear range, the interaction between the bridge and the tailpiece enhances a non-linear

aspect of bridge motion.

I believe that the widely accepted changes in sound due to break angle adjustment point

to string stretching as a key phenomenon. So that is the subject of this section.

As a simple example of the geometry, consider the stretch required when pulling the

center of a taut string sideways. Let the endpoints be fixed and separated by one meter.

Then displace the center sideways by one centimeter. The string will have to stretch (about)

0.2 mm or 1/5,000 of its total length. (See FIG. 4.) If there is initially a kink at the center

FIG. 4. Additional distortion and stretch (dashed lines), to scale with the numbers in the text

with a displacement of 10 cm from the straight line (which is a break angle of about 11.5o),

then the stretch required by an additional 1 cm sideways displacement at the center is about

4 mm or about 1/250 of its total length, i.e., 20 times greater than in the previous case.

FIG. 5 is closer to an actual banjo. L is the scale length (bridge to nut), l is the bridge to

tailpiece distance, and θo is the equilibrium (quiet) break angle. The equilibrium length of

the string is
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oL

x

l

θ

FIG. 5.

So = L+ l / cos θo .

If the bridge moves up a distance x, the string must stretch a length ∆S. In practice x

is much smaller than l. For example, x could be 0.1 mm and l could be 4 cm. Using that

as an approximation, (x� l)

∆S ' x sinθo

Note that sin 15o ' 0.26 ; sin 6o ' 0.10 ; and it gets smaller still for smaller angles: sin 1o

' 0.02. The behavior of ∆S as θo approaches 0o requires a bit more care. In that case,

the approximation x� l implies that we get a stretch proportional to x2, i.e., a stretch yet

smaller by a factor of x/l.† The stretch that accompanies the normal transverse vibration

along the string itself is likewise proportional to the square of the amplitude of that vibration

— which is why it is usually ignored in physics descriptions of vibrating strings.

B. String Issues & Details

Changes in string tension start at the bridge and travel along the string at the speed of

(longitudinal) sound in that material. For steel, that’s about 6100 meters per second. For

reference, the speed of sound in air is about 343 m/s. The speed of transverse vibrations

along a stretched string of length L tuned to a pitch ν is 2Lν. For a banjo string, that might

be 270 to 400 meters per second. So it is reasonable in the present discussion to imagine

that the tension changes are approximately instantaneous.

All strings on a banjo are subjected to roughly the same stretch by the bridge motion.

(That means we’re ignoring the simultaneous rocking motion of the bridge; rocking is another

story — and actually not inconsequential in creating good banjo sound.) Thicker strings

will experience a greater increase in tension for the same stretch. However, the fractional

†The exact formula is ∆S =
√
L2 + x2 − L+

√
l2 + (l tanθo + x)2 −

√
l2 + (l tanθo)2 .

change in pitch is about the same as for thinner strings because it is the ratio of tension to
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cross sectional area (or diameter-squared) that determines pitch.

Gut, nylon, or other synthetic strings are inherently stretchier than steel. Hence, a given

amount of bridge and head motion (which means a given loudness) will produce less pitch

change in these non-metallic strings than in steel. That’s at least part of why they can’t

produce as much clang, twang, ping, or crack. (Being thicker, they also damp out the higher

frequencies faster, relative to metal strings.)

C. Comparison to Other Instruments

The break angle over a floating bridge produces string stretching. That stretching pro-

duces tension variation that is much greater than it would be with zero break angle. In

technical terms, the stretch is first order in the small string and bridge amplitudes instead

of second order. Hence, this variation can produce a frequency modulation as the bridge

moves.

As mentioned before, if the bridge is mounted on a saddle, which, in turn, is fixed to the

soundboard, the only string stretching is that associated with vibrations along the string.

The up-and-down motion of that bridge does not add any further stretching.

There certainly are other acoustic, stringed instruments with floating bridges, where

the bridge moves relative to the fixed ends of the string. These include the violin family,

mandolins, and arch-top guitars. The difference is that those instruments’ soundboards

are made of wood (or a facsimile thereof), not skin or mylar. Their bridges do not move

nearly as much as on a banjo. We know this even without a high-tech measurement of those

movements. The simple fact is that the banjo is LOUD, even though the vibrating area

of the soundboard is comparable or smaller than on the competition.† Sound volume comes

from the motion of the soundboard and/or the motion of air in and out of the soundbox. So

we can safely conclude that a typical plucked string motion on a banjo produces far larger

†A favorite demonstration: rub a finger gently on a banjo head; then rub it similarly on anything else —

or listen to the accompanying recording of just that: head and adjoining piece of cardboard, both next to the

microphone; each rub is about 4 seconds. (Click on the previous box if you’re reading this on a Web-enabled

device and the box appears or go to http://www.its.caltech.edu/∼politzer/FM/head-rub.mp3.)

bridge motion than it does on other instruments. This is also evident in the shorter sustain

of banjo notes: string energy converts more quickly to sound because of the greater bridge

http://www.its.caltech.edu/~politzer/FM/head-rub.mp3
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and head motion.

The quintessential banjo features should disappear if we replace the skin with wood.

Actually, such instruments exist. We call them banjos because they’re played as banjos, but

the sound is far more dulcimer-like. Here is the sound of a homemade example with a break

angle of 61
2

o
and a head made of 1/8′′ thick plywood: (See FIG. 6.)

http://www.its.caltech.edu/˜politzer/FM/hexagon-steel-1.mp3

That’s with extra light steel strings. In person, it’s relatively quiet, with good sustain and

little twang or clang. However, I usually have it strung with fishing line:

http://www.its.caltech.edu/˜politzer/FM/hexagon-nylon-2.mp3

It was built from a kit from the Hughes Dulcimer Co of Denver CO. (I believe they’re no

longer in business.)

FIG. 6. The soundboard is 1/8′′ plywood. “Ceci n’est pas un banjeau” — ?

III. HEAD TENSION & PING

So far, the main consequences of using a drumhead for a soundboard follow from its

flexibility. It moves much more in response to the up-and-down forces of the strings than

wood soundboards do. That makes the banjo loud, and it enhances the floating bridge’s

impact string length and tension. But I suspect that its own dynamics also are important

elements in producing banjo timbre.

The drumhead has ways of introducing further, crucial non-linearities into the sound

production. In contrast to string tension, which to a good approximation is uniform over the

http://www.its.caltech.edu/~politzer/FM/hexagon-steel-1.mp3
http://www.its.caltech.edu/~politzer/FM/hexagon-nylon-2.mp3
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entire string, head tension is a complex matter, and I do not know of any technical description

in the world of musical acoustics that does it justice. But banjo players experience it first

hand. Consider an extreme example: if there is a small tear in the head, the tension right

at the tear, perpendicular to the torn edge is zero. However, the tension along the tear

need not be zero, and it can easily be quite large far from the tear. The tension around the

rim is not automatically uniform. In the vicinity of the bridge, it resists attempts to get

it that way. The technical term for the tension I am describing is “stress,” and the math

is complicated because the forces within the head can be in various directions, responding

to distortions in various directions. The drumhead modeled in college physics courses is

actually a reasonable approximation to a soap bubble film in vacuum. The vibrations of a

real drumhead are significantly different.

One important aspect in the present context is the general preference to really tighten

those banjo heads down. Apocryphal advice often repeated: Tighten it down until it tears

and then back off just a quarter turn. An overly tight head (if it hasn’t already torn) will

diminish the sound output simply because the tension restricts the motion. But something

magical happens as one comes close to that range. The head sounds come alive. That is

to say, tightening the head doesn’t simply raise the frequencies of all its vibrational modes,

all in proportion. That’s how physics course drumheads work, and their tone would be

recognizably constant as the head is tightened — just with higher pitch. My guess is that

this very tight domain on real heads enjoys non-linearities which help create ring and ping.

In the discussion of frequency modulation, I did not explicitly comment on the head

response, as if to imply that it behaved much like the strings. But the strings are well

within their elastic limit, obeying their own Hooke’s Law (force strictly proportional to

stretch) for longitudinal stretching. In contrast, the head is almost certainly at or often

beyond that point.

The way in which the head pushes back against bridge motion also determines very

important aspects of banjo sound. I give a brief introduction here and make clear why this

is a very important banjo physics issue. However, I leave for future study the geometry of

head stress near the bridge and the impact of non-linearities in head stress and strain.

FIG. 7 suggests a simple metaphor for a small part of the string–bridge–head system.

The central mass M represents the bridge. Strings push down from the top, represented

by the upper spring of “spring constant” k. Their extra force F when the bridge moves a
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K >> k

k

K

M

fixed

fixed

FIG. 7. With very different strength springs, the stiffer one dominates the oscillations.

distance x away from equilibrium is kx. The head pushes up on the bridge from below. And

the head is represented by the spring with constant K.

For a single spring, if a mass m is attached to one end of the spring and the other is fixed

and the mass is displaced from equilibrium and let go, it will oscillate with a frequency ν

given by ν = 2π
√
k/m.

In the two spring system of FIG. 6 with the outer spring ends kept fixed, the effective

total spring constant is K + k. If M is displaced a distance x from its equilibrium position,

the springs push back with a total force of (K + k)x. And the frequency of free oscillations

is 2π
√

(K + k)/m. If the bottom spring is much stiffer than the top one, then K � k, and

that means that, to a first approximation K + k ' K.

Just by comparing the deflection or break angle of a banjo head at the foot of the bridge

to the break angle of the strings, we can safely conclude that the K of the head is, indeed,

much bigger than the k of all the strings combined. At equilibrium, the string and head

forces on the bridge are of equal magnitude but opposite direction. They exactly cancel.

But, as the bridge moves, the force of the head is a significant determinant of its motion.

And, as already mentioned, the relation of that force to the displacement of the bridge away

from its equilibrium position is not simple and likely non-linear.

As a teaser of what might be lurking in the dynamics of the head, consider the simplest

deviation from ideal spring-like behavior that the head might exhibit. In particular, it is

likely that the head has been stretched so tight that typical bridge motions explore its non-

linear response. When the bridge goes down a distance x, the extra upward force of the



17

head on the bridge might be greater than the decrease in force that would come with the

bridge going up a distance x.

The following audio sample gives a hint of what that can do to the sound. The first

note is a pure sinusoidal oscillation, modulated in amplitude to imitate a pluck, i.e. an

immediate turn-on followed by an exponential decay. The second sound is the behavior of

an oscillator whose restoring force gets stronger on one side of equilibrium and weaker on

the other. (E.g., F = −kx− βx2.)

http://www.its.caltech.edu/˜politzer/FM/sine-stiff-head-pluck.mp3

The second pluck’s wave form in time is asymmetric, spending more time above than

below equilibrium in each cycle. In terms of frequency spectra, from about 1000 to 6000 Hz

the even harmonics are relatively weaker than the odd ones for the sine wave with its pluck

amplitude envelope. All integer harmonics are present in the non-linear, anharmonic case.

IV. IN CONCLUSION

A banjo is identified as such by its floating bridge and drumhead soundboard. What

I have tried to do in this note is explore the mechanics of how string stretching over the

floating bridge can contribute to its characteristic sound. It is also clear that the forces

of the head on the bridge are another potential source of crucial non-linearity and deserve

further study.
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