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Homework Assignment #2 
( Due:  Friday, 18 Oct 2019 by midnight  /  Please e-mail your work directly to rmkatti@caltech.edu ) 

 

 
1. As a measure of power level in electrical circuits, the dBm is very useful for practical measurements.  

As you know, decibels are logarithmic ratios, and for power can be expressed as  
# dB’s = 10 log10 ( P / Pref  ) 

For dBm, this ratio is specified as the power relative to a reference level of one milliwatt:  Pref = 
1mW.  Hence, a power level, P , of 1 mW corresponds to 0 dBm, 1 µW corresponds to -30dBm, 
and 1 nW corresponds to -60dBm, etc.  

Given the following resistors at room temperature (T=300K), calculate the thermal noise power (in 
dBm); and the sq-rt noise voltage noise spectral density of these resistors, and the noise voltage with 
the given bandwidth values (BW) shown. 

a) R=50W, BW=1 Hz;  

b) R=1kW, BW=1 kHz; 

c) R=2MW, BW=10 kHz. 

d) Please comment on the relative thermal noise powers you have calculated for these different 
resistors. 

e) Review the slide entitled "Nyquist's Derivation" from Lecture 3. Should there be a factor of 4 in 
your formula for noise power? Why or why not? 

 
 

2. Scenario:  I perform frequency response measurements on the best amplifier in my laboratory and 
determine that its bandwidth is flat from 1Hz-1MHz.  To evaluate the amplifier’s voltage noise RTI, I 
then short circuit its input port, and measure the voltage noise at the amplifier’s output.  I observe 
that its r.m.s. magnitude is 100µV.  The manufacturer assures me in the owner’s manual that the 
amplifier’s noise is white over its aforementioned bandwidth, that its power gain is 60dB, and that its 
input impedance is 100MW in parallel with 3pF. 

a. What is the voltage noise spectral density RTI for this amplifier? 

b. I now remove the short and replace it with a 10kΩ resistor that has been cooled to 
40mK=0.04K (again placing it across the amplifier’s input terminals).  Upon doing this I see the 
r.m.s. voltage noise at the amplifier’s output go up by a factor of two.  You’ve heard in the 
lectures the instructor assert that we can model this effect as arising, in part, from a white 
current noise spectral density that emanates outward from the amplifier’s input...  a kind of 
backaction from the amplifier.   

c. Does what I said make any sense?  Why?  Draw a little circuit diagram to explain your 
arguments with representative noise generators hooked to the input and output terminals. 

d. What is the magnitude of the sq-rt current noise spectral density emanating from the noise 
source at the input terminals that is responsible for this effect? 

e. If this is really happening the current noise source will heat up the 10kW resistor!  How much 
power does this noise source spew into this resistor? 

f. Does this amount of backaction power seem significant to you?  Why or why not? 
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3. Optimization of force sensing using a piezoresistive nanocantilever. 

The figures above are from early atomic force microscope (AFM) research in Professor Cal Quate’s group 
at Stanford, where AFM was first invented [Specifically, the figures are from:  M. Tortonese et al. Applied 
Physics Letters 62, 834 (1993)].  In AFM with a piezoresistive cantilever, which was developed later (about 
the time of this work), the microscopic variations in surface topology are sensed as a sample is scanned 
beneath a sharp tip at the cantilever’s distal end.  The forces of interaction between the sharp tip and the 
sample surface induce minute cantilever deflections.  If the cantilever is thin enough the cantilever becomes 
very sensitive; forces associated with atomic interactions between individual atoms can then be measured.   
Our analysis proceeds as follows:  We first calculate the relationship between applied force, , which is 

the independent variable, and the resulting deflection at the cantilever’s distal end (it’s “tip”), 
. Here, x is the deflected position of the cantilever tip, and x0 is its initial position before the force is 
applied. We then relate strain at the bottom surface of the cantilever (dark shading in the figure above, at 
the right) to its deflection at the tip.  For this method of displacement transduction to work, the 
piezoresistor must be localized to just one (here, the bottom) surface.  (Strain in both surfaces, being of 
opposite sign, will cancel.)  Hence, we need to evaluate the deflection-induced surface strain to determine 
the change in the piezoresistor’s resistance resulting from deflection.  So… 

For a simple “diving board”-like cantilever the relationship between displacement (at the tip) and applied 
force (also at the tip) is 

, 
where the cantilever’s moment of inertia, I, can be expressed as 

. 
Here, is the deflection, l is the length, t is the thickness, w is the width and E is Young’s modulus.  

Since , we can calculate the stiffness (spring constant) as 

 
For a small deflection, , the cantilever acquires an angle of deflection of approximately 

, 

 Fx

    δx = x− x0

  
δ x = l3

3EI
Fx

  
I = wt3

12
  δx

   Fx =−k δx

  
k = 1

4
E w t

l
⎛
⎝⎜

⎞
⎠⎟

3

   δx≪ l

  
δθ  δ x

l

	
Piezoresistive cantilever for atomic force microscopy.  (left)  Scanning electron micrograph of a 
piezoresistive cantilever.  (right) schematic diagram of the piezoresistive detection scheme for AFM. 

piezoresistor 
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and therefore, a radius of curvature  that is approximately given as 

. 
The average length change of the cantilever is the difference in arc length between the deflected 
cantilever’s upper and lower surfaces,  

. 

Since, for small deflections the strain is equal and opposite at the top and bottom faces, the surface 
strain at one face is half the above value, 

, 
which we can rewrite in terms of the applied force, 

. 
The “gauge factor”, , relates induced fractional resistance change to strain, 

. 
Here, R0 is the unstrained piezoresistor resistance.  Although early AFM focused on direct contact 
interactions between the cantilever tip and surface, later work began to focus on detection of miniscule 
indirect forces that exist between the tip and surface when they are in close proximity – arising from van 
der Waal’s, electrostatic, and Casimir interactions.  For such operation, resonant (a.c.) detection is 
preferable because of the signal boost given for large Q’s.  (This will be described in class.) 

Nanocantilevers can be much more sensitive than the microcantilevers used in early AFM studies.  Some 
time ago, my group determined that metallic piezoresistive (PZM) detection works well as cantilever 
size is scaled into the nano regime  [Li, M., Tang, H.X., & Roukes, M.L., Ultra-sensitive NEMS-based 
cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotechnology 2, 
114-120 (2007).]  Let’s consider optimization of a hypothetical system to read out minute forces from 
such a nanocantilever, and ask “what is the minimum detectable force that is achievable?” 

 
Now, on to the homework problem! 

Assume the nanocantilever has simple diving-board geometry with the following characteristics:  
t = 50nm,  l = 5 µm,  w = 200 nm, , and Q=10,000 when measured in vacuo at 300K.  Also assume 

it is made from monocrystalline Si, which has  E = 2 x 1011 N/m2  and . 

a) The cantilever’s resonant frequency is given as   where, for the fundamental mode, 

.  What is the cantilever’s frequency f0 (in Hz) and force constant, k (in N/m)? 

b) At finite temperatures, thermal fluctuations drive stochastic displacement of the device.  The 
fluctuation-dissipation theorem (FDT) establishes the ultimate displacement-noise floor of the 
cantilever – that arising solely from these so-called thermomechanical fluctuations.  Dividing this FDT 
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prediction by the cantilever’s (resonant) amplitude response function (as was discussed earlier in class) 
allows determination of its effective noise RTI in the force domain. On resonance, this yields the sqrt-
spectral density of the cantilever force noise,  

     . 

c) This quantity tells us how big an a.c. force on the cantilever is required, on resonance, to overcome 

its intrinsic thermomechanical fluctuations.  What is the value of  for the cantilever? 

As always, a practical measurement system will never precisely attain noise levels given by thermodynamic 
fluctuations – but, with careful design, we can get close.  As described in class, we must also consider 
transducer noise and readout system noise.  Let’s first consider the former. 
Assume our metallic piezoresistor has a resistance of 100W. 

d) What is its thermal voltage noise (Johnson noise) spectral density? 

e) We must bias the piezoresistor with a d.c. current to transduce the displacement-induced time-varying 
strain, which results in a time-varying resistance, into a time-varying voltage.  The magnitude of this 
transduced noise voltage – which relates directly to the thermodynamic displacement fluctuations – 
will be directly proportional to the bias current.  At what magnitude of this bias current will, in the 
voltage domain, the transduced on-resonance displacement fluctuations equal the piezoresistor’s 
Johnson noise?  Is the current required to achieve this of reasonable magnitude to apply to the 
nanoscale piezoresistor?  Why or why not? 

 
Now, let’s consider the amplifier’s noise RTI (i.e., in the force domain). 

f) With special matching techniques (to be described in a future lecture) it is possible to match this 
transducer with a readout amplifier characterized by a total noise (voltage plus current noise) of order 
~100 pV/ÖHz.  Considering this amplifier’s noise alone, what is its equivalent contribution in the force 
domain (i.e. RTI) at the bias current deduced above in part (b)? 

Now, let’s evaluate the performance of the complete, cascaded measurement system. 

g) What is the total force noise RTI – from all aforementioned sources: thermomechanical noise, 
transducer noise, and amplifier noise – for this measurement system.   

h) What is the dominant noise source in this system? 

i) How can we improve the system’s performance?  Can you think of any limitations there might be to 
attain such improvement?   
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