Vector Mechanics for Engineers: Statics

How to prepare for the midterm

- The midterm will be based on Chapters 1-5 and sections 6.1-6.7. It will be onehour, take-home, open-textbook and open-notes exam.
- Read "Review and Summary" after each Chapter. Brush up on topics that are not familiar.
- Make sure you know how to solve HW problems and sample problems. It is useful to review all sample problems, or at least 2.9, 3.4, 3.5, 3.7, 4.2, 4.3, 4.4, 4.5, 5.1, 5.2, 5.4, 5.6, 5.9, 5.10, 6.1, 6.2.
- Review important tables/formulae from the book (such as supports and their reactions) so that you can use them easily.
- Remember, the correct reasoning and an error in computation will get you most of the points. However, the right answer with no explanation will get you no points, unless the problem specifically asks for an answer only.
- Do not forget about the honor code. Carefully read the instructions on the front page of the midterm. You cannot discuss anything about the midterm until after the due date.
- The rest of this handout, is a brief summary of important topics we have learned so far.

Vector Mechanics for Engineers: Statics

Force defined by its magnitude and two points

Often the force is defined by its magnitude F and by two points on its line of action,

$$
M\left(x_{1}, y_{1}, z_{1}\right) \text { and } N\left(x_{2}, y_{2}, z_{2}\right)
$$

$\vec{d}=d_{x} \vec{i}+d_{y} \vec{j}+d_{z} \vec{k}=$ vector joining M and N
$d_{x}=x_{2}-x_{1} \quad d_{y}=y_{2}-y_{1} \quad d_{z}=z_{2}-z_{1} \quad d=\sqrt{d_{x}^{2}+d_{y}^{2}+d_{z}^{2}}$
$\vec{\lambda}=\frac{1}{d}\left(d_{x} \vec{i}+d_{y} \vec{j}+d_{z} \vec{k}\right)$
$\vec{F}=F \vec{\lambda} \quad F_{x}=\frac{F d_{x}}{d} \quad F_{y}=\frac{F d_{y}}{d} \quad F_{z}=\frac{F d_{z}}{d}$

Vector Mechanics for Engineers: Statics

Moment of a Force About a Point

- A force vector is defined by its magnitude and direction. Its effect on the rigid body also depends on its line of action.
- The moment of \boldsymbol{F} about O is defined as

$$
M_{O}=r \times F
$$

- The moment vector $\boldsymbol{M}_{\boldsymbol{O}}$ is perpendicular to the plane containing O and the force \boldsymbol{F}.
- Magnitude of $\boldsymbol{M}_{\boldsymbol{O}}$ measures the tendency of the force

(a) to cause rotation of the body about an axis along $\boldsymbol{M}_{\boldsymbol{O}}$.

$$
M_{O}=r F \sin \theta=F d
$$

The sense of the moment may be determined by the right-hand rule.

- Any force \boldsymbol{F} ' that has the same magnitude and

(b) direction as \boldsymbol{F}, is equivalent if it also has the same line of action and therefore, produces the same moment.

Vector Mechanics for Engineers: Statics

Rectangular Components of the Moment of a Force

The moment of \boldsymbol{F} about O,

$$
\begin{array}{ll}
\vec{M}_{O}=\vec{r} \times \vec{F}, & \\
& \vec{r}=x \vec{i}+y \vec{j}+z \vec{k} \\
\vec{F}=F_{x} \vec{i}+F_{y} \vec{j}+F_{z} \vec{k}
\end{array}
$$

$$
\vec{M}_{O}=M_{x} \vec{i}+M_{y} \vec{j}+M_{z} \vec{k}
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
x & y & z \\
F_{x} & F_{y} & F_{z}
\end{array}\right| \\
& =\left(y F_{z}-z F_{y}\right) \vec{i}+\left(z F_{x}-x F_{z}\right) \vec{j}+\left(x F_{y}-y F_{x}\right) \vec{k}
\end{aligned}
$$

Vector Mechanics for Engineers: Statics

Scalar Product of Two Vectors: Applications

- Angle between two vectors:

$$
\begin{aligned}
& \vec{P} \bullet \vec{Q}=P Q \cos \theta=P_{x} Q_{x}+P_{y} Q_{y}+P_{z} Q_{z} \\
& \cos \theta=\frac{P_{x} Q_{x}+P_{y} Q_{y}+P_{z} Q_{z}}{P Q}
\end{aligned}
$$

- Projection of a vector on a given axis:
$P_{O L}=P \cos \theta=$ projection of P along $O L$
$\vec{P} \bullet \vec{Q}=P Q \cos \theta$
$\frac{\vec{P} \bullet \vec{Q}}{Q}=P \cos \theta=P_{O L}$
- For an axis defined by a unit vector:

$$
\begin{aligned}
P_{O L} & =\vec{P} \bullet \vec{\lambda} \\
& =P_{x} \cos \theta_{x}+P_{y} \cos \theta_{y}+P_{z} \cos \theta_{z}
\end{aligned}
$$

Vector Mechanics for Engineers: Statics

Mixed Triple Product of Three Vectors

- Mixed triple product of three vectors, $\vec{S} \bullet(\vec{P} \times \vec{Q})=$ scalar result
- The six mixed triple products formed from $\boldsymbol{S}, \boldsymbol{P}$, and \boldsymbol{Q} have equal magnitudes but not the same sign,

$$
\begin{aligned}
\vec{S} \bullet(\vec{P} \times \vec{Q}) & =\vec{P} \bullet(\vec{Q} \times \vec{S})=\vec{Q} \bullet(\vec{S} \times \vec{P}) \\
& =-\vec{S} \bullet(\vec{Q} \times P)=-\vec{P} \bullet(\vec{S} \times \vec{Q})=-\vec{Q} \bullet(\vec{P} \times \vec{S})
\end{aligned}
$$

- Evaluating the mixed triple product,

$$
\begin{gathered}
\vec{S} \bullet(\vec{P} \times \vec{Q})=S_{x}\left(P_{y} Q_{z}-P_{z} Q_{y}\right)+S_{y}\left(P_{z} Q_{x}-P_{x} Q_{z}\right) \\
+S_{z}\left(P_{x} Q_{y}-P_{y} Q_{x}\right)
\end{gathered}
$$

$$
=\left|\begin{array}{lll}
S_{x} & S_{y} & S_{z} \\
P_{x} & P_{y} & P_{z} \\
Q_{x} & Q_{y} & Q_{z}
\end{array}\right|
$$

Vector Mechanics for Engineers: Statics

Moment of a Force About a Given Axis

- Moment $\boldsymbol{M}_{\boldsymbol{O}}$ of a force \boldsymbol{F} applied at the point \boldsymbol{A} about a point \boldsymbol{O},

$$
\vec{M}_{O}=\vec{r} \times \vec{F}
$$

- Scalar moment $M_{O L}$ about an axis $\boldsymbol{O L}$ is the projection of the moment vector $\boldsymbol{M}_{\boldsymbol{O}}$ onto the axis,

$$
M_{O L}=\vec{\lambda} \bullet \vec{M}_{O}=\vec{\lambda} \bullet(\vec{r} \times \vec{F})
$$

- The moment $M_{O L}$ of \boldsymbol{F} about the axis OL
 measures the tendency of the force \boldsymbol{F} to impart a rigid body rotation about the axis OL.

Vector Mechanics for Engineers: Statics

Moment of a Couple

- Two forces \boldsymbol{F} and $-\boldsymbol{F}$ having the same magnitude, parallel lines of action, and opposite sense are said to form a couple.
- Moment of the couple,

$$
\begin{aligned}
\vec{M} & =\vec{r}_{A} \times \vec{F}+\vec{r}_{B} \times(-\vec{F}) \\
& =\left(\vec{r}_{A}-\vec{r}_{B}\right) \times \vec{F} \\
& =\vec{r} \times \vec{F} \\
M & =r F \sin \theta=F d
\end{aligned}
$$

- The moment vector of the couple is independent of the choice of the origin of the coordinate axes, i.e., it is a free vector that can be applied at any point with the same effect.

Vector Mechanics for Engineers: Statics

Moment of a Couple

Two couples will have equal moments if

- $F_{1} d_{1}=F_{2} d_{2}$
- the two couples lie in parallel planes, and
- the two couples have the same sense or
 the tendency to cause rotation in the same direction.

Vector Mechanics for Engineers: Statics

Equivalent Couples

Two systems of forces are equivalent if we can transform one of them into the other by one or more of the following operations:

- replacing two forces acting on the same particle by their resultant;
- resolving the force into components (including attaching two equal and opposite forces to the same particle);
- moving the force along its line of action.

Two couples that have the same moments are equivalent.

Vector Mechanics for Engineers: Statics

System of Forces: Reduction to a Force and Couple

- A system of forces may be replaced by a collection of force-couple systems acting a given point O
- The force and couple vectors may be combined into a resultant force vector and a resultant couple vector,

$$
\vec{R}=\sum \vec{F} \quad \vec{M}_{O}^{R}=\sum(\vec{r} \times \vec{F})
$$

- The force-couple system at O may be moved to O^{\prime} with the addition of the moment of \boldsymbol{R} about O^{\prime},

$$
\vec{M}_{O^{\prime}}^{R}=\vec{M}_{O}^{R}+\vec{s} \times \vec{R}
$$

- Two systems of forces are equivalent if they can be reduced to the same force-couple system.

Vector Mechanics for Engineers: Statics

Equilibrium of a Rigid Body in Two Dimensions

(a)

- For all forces and moments acting on a twodimensional structure,
$F_{z}=0 \quad M_{x}=M_{y}=0 \quad M_{z}=M_{O}$
- Equations of equilibrium become

$$
\sum F_{X}=0 \quad \sum F_{y}=0 \quad \sum M_{A}=0
$$

where A is any point in the plane of the structure.

- The 3 equations can be solved for no more than 3 unknowns.
- The 3 equations can not be augmented with additional equations, but they can be replaced $\sum F_{X}=0 \quad \sum M_{A}=0 \quad \sum M_{B}=0$

Vector Mechanics for Engineers: Statics

Reactions at Supports and Connections for a TwoDimensional Structure

Vector Mechanics for Engineers: Statics
 Reactions at Supports and Connections for a TwoDimensional Structure

Vector Mechanics for Engineers: Statics

Equilibrium of a Rigid Body in Three Dimensions

- Six scalar equations are required to express the conditions for the equilibrium of a rigid body in the general three dimensional case.

$$
\begin{array}{lll}
\sum F_{x}=0 & \sum F_{y}=0 & \sum F_{z}=0 \\
\sum M_{x}=0 & \sum M_{y}=0 & \sum M_{z}=0
\end{array}
$$

- These equations can be solved for no more than 6 unknowns which generally represent reactions at supports or connections.
- The scalar equations are conveniently obtained by applying the vector forms of the conditions for equilibrium,

$$
\sum \vec{F}=0 \quad \sum \vec{M}_{O}=\sum(\vec{r} \times \vec{F})=0
$$

Vector Mechanics for Engineers: Statics

Centroids and First Moments of Areas and Lines

Similarly for a line:

First moments of the area A :
$Q_{y}=\int x d A, Q_{x}=\int y d A$
Coordinates \bar{x}, \bar{y} of the centroid of the area A :
$\bar{x} A=\int x d A=Q_{y}, \quad \bar{y} A=\int y d A=Q_{x}$

$$
\begin{aligned}
\bar{x} W & =\int x d W \\
\bar{x}(\gamma a L) & =\int x(\gamma a) d L \\
\bar{x} L & =\int x d L \\
\bar{y} L & =\int y d L
\end{aligned}
$$

Vector Mechanics for Engineers: Statics

First Moments of Areas and Lines

B (a)
(a)

- An area is symmetric with respect to an axis $B B^{\prime}$ if for every point P there exists a point P ' such that $P P^{\prime}$ is perpendicular to $B B^{\prime}$ and is divided into two equal parts by $B B^{\prime}$.
- The first moment of an area with respect to a line of symmetry is zero.
- If an area possesses a line of symmetry, its centroid lies on that axis
- If an area possesses two lines of symmetry, its centroid lies at their intersection.
- An area is symmetric with respect to a center O if for every element $d A$ at (x, y) there exists an area $d A$ ' of equal area at $(-x,-y)$.
- The centroid of the area coincides with the center of symmetry.

Vector Mechanics for Engineers: Statics

Centroids of Common Shapes of Areas

Stupe		I	I	Nom
Thangiereme			$\frac{4}{3}$	$\frac{14}{2}$
Quenteraticuler нาม		$\frac{4 r}{36}$	$\frac{4 r}{36}$	$\frac{\pi}{4}$
Semidirular ure	$\frac{f_{1}}{4 r \mid} \frac{1 /}{o l}$	\bigcirc	$\frac{4}{3}$	$\frac{\square}{2}$
Chartre-lliptical arma		$\frac{40}{38}$	$\frac{4}{3 x}$	$\frac{\text { seb }}{4}$
Senielliptical ven	$\stackrel{\square}{0}{ }_{0}^{0}{ }^{\circ}$	0	$\frac{4}{4}$	$\frac{\text { mi }}{2}$
$\begin{gathered} \text { Semparabele } \\ \text { ama } \end{gathered}$		$\frac{30}{3}$	$\frac{3}{5}$	$\frac{2 a b}{3}$
Preblak ener	$\operatorname{col}_{\square=a}^{1-}$	0	$\frac{34}{5}$	$\frac{404}{3}$
Prablole poumar		$\frac{34}{4}$	$\frac{36}{10}$	$\frac{4}{3}$
Cemend pendel		$\frac{201}{* \cdot 2}$.	$\frac{n+1}{4 n+2}{ }^{\text {a }}$	$\frac{9 \lambda^{*}}{n+1}$
Comelar weta		$\frac{2 \sin 9}{39}$	0	ar ${ }^{2}$

Vector Mechanics for Engineers: Statics

Centroids of Common Shapes of Lines

Vector Mechanics for Engineers: Statics

Composite Plates and Areas

- Composite plates

$$
\bar{X} \sum W=\sum \bar{x} W
$$

$$
\bar{Y} \sum W=\sum \bar{y} W
$$

- Composite area
$\bar{X} \sum A=\sum \bar{x} A$ $\bar{Y} \sum A=\sum \bar{y} A$

Vector Mechanics for Engineers: Statics

Center of Gravity of a 2D Body

- Center of gravity of a plate

$\sum F_{z}: \quad \sum \Delta W, W=\int d W$
$\sum M_{y}: \quad \sum x \Delta W, \bar{x} W=\int x d W$
$\sum M_{y}: \quad \sum y \Delta W, \bar{y} W=\int y d W$

Plate of uniform thickness t, specific weight γ, and area A :
$W=\gamma t A ;$
$\bar{x}(\gamma t A)=\int x(\gamma t) d A ;$
$\bar{x} A=\int x d A=Q_{y}$
$=$ first moment of the area A
with respect to the y axis
$\bar{y} A=\int y d A=Q_{x}$

Vector Mechanics for Engineers: Statics

Theorems of Pappus-Guldinus

- Surface of revolution is generated by rotating a plane curve about a fixed axis.

- Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation.

$$
A=2 \pi \bar{y} L
$$

Vector Mechanics for Engineers: Statics

Theorems of Pappus-Guldinus

- Body of revolution is generated by rotating a plane area about a fixed axis.

- Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation.

$$
V=2 \pi \bar{y} A
$$

Vector Mechanics for Engineers: Statics

Distributed Loads on Beams

$W=\int_{0}^{L} w d x=\int d A=A$

- A distributed load is represented by plotting the load per unit length, $w(\mathrm{~N} / \mathrm{m})$. The total load is equal to the area under the load curve.
$(O P) W=\int x d W \quad$ - A distributed load can be replace by a concentrated
$(O P) A=\int_{0}^{L} x d A=\bar{x} A$ load with a magnitude equal to the area under the load curve and a line of action passing through the area centroid.

Vector Mechanics for Engineers: Statics

Definition of a Truss

- A truss consists of straight members connected at joints. No member is continuous through a joint.
- Most structures are made of several trusses joined together to form a space framework. Each truss carries those loads which act in its plane and may be treated as a two-dimensional structure.
- Bolted or welded connections are assumed to be pinned together. Forces acting at the member ends reduce to a single force and no couple. Only twoforce members are considered.
- When forces tend to pull the member apart, it is in tension. When the forces tend to compress the member, it is in compression.

Vector Mechanics for Engineers: Statics

Simple Trusses

- A rigid truss will not collapse under the application of a load.
- A simple truss is constructed by successively adding two members and one connection to the basic triangular truss.
- In a simple truss, $m=2 n-3$ where m is the total number of members and n is the number of joints.

Vector Mechanics for Engineers: Statics

 Analysis of Trusses by the Method of Joints

Vector Mechanics for Engineers: Statics

Analysis of Trusses by the Method of Sections

- When the force in only one member or the forces in a very few members are desired, the method of sections works well.
- To determine the force in member $B D$, pass a section through the truss as shown and create a free body diagram for the left side.
- With only three members cut by the section, the equations for static equilibrium may be applied to determine the unknown member forces, including $F_{B D}$.

