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Outline

• Motivation: MEMS and NEMS

• Phase and amplitude models of synchronization

• Model for reactive coupling and nonlinear frequency pulling

• Analysis and results

• Conclusions
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Array ofµm-scale oscillators[From Buks and Roukes (2002)]

Theory: R. Lifshitz R and MCC [Phys. Rev. B67, 134302 (2003 )]

Response of parametrically driven nonlinear coupled oscillators with

application to micromechanical and nanomechanical resonator arrays
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MicroElectroMechanicalSystems and NEMS

Arrays of tiny mechanical oscillators:

• driven, dissipative⇒ nonequilibrium

• nonlinear

• collective

• noisy

• (potentially) quantum

Technological interest!

This talk: Synchronization
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Phase and amplitude models (mean field version)

• Phase model (Winfree-Kuramoto)

θ̇n = ωn −K 1

N

∑
m

sin(θn − θn+m)

• Complex amplitude modelzn = rneiθn : dissipative coupling and

saturating nonlinearity (Matthews, Mirollo, and Strogatz)

żn = iωnzn + (1− |zn|2)zn −K 1

N

∑
m

[zn − zm]

• Complex amplitude model: reactive coupling and nonlinear frequency

pulling (seeSynchronizationby Pikovsky, Rosenblum, and Kurths)

żn = i(ωn − α |zn|2)zn + (1− |zn|2)zn − iβ 1

N

∑
m

[zn − zm]

In each caseωn is taken from some distributiong(ω) (eg. Lorentzian, Triangular,

or top-hat) of widthw.
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Connection with physical oscillator

0= ẍn + (1+ ωn)xn −D[xn − 1
2(xn+1+ xn−1)] − ν(1− x2

n)ẋn − ax3
n

Assume dispersion, coupling, damping and nonlinear terms are small.

Introduce small parameterε and write

ωn = εω̄n, D = εD̄, a = εā, ν = εν̄
Then with the “slow” time scaleT = εt

xn(t) =
[
An(T )e

it + c.c.
]
+ εx(1)n (t)+ . . .

This gives the complex amplitude model (nearest neighbor coupling) with

An ⇒ zn, ā ⇒ α, D̄ ⇒ β
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Synchronization

Order parameter

9 = N−1
∑
n

rn e
iθn = R ei2

(For phase modelrn = 1)

Synchronization occurs ifR 6= 0.

• Fully locked state forall θ̇n = 2̇
• Partially locked state forsome θ̇n = 2̇
• Novel state withR 6= 0 butno θ̇n = 2̇
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Results for the phase model (Kuramoto, 1975)

K

R

1.0

Kc

Fully lockedPartially lockedUnlocked
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Our model

żn = i(ωn − α |zn|2)zn + (1− |zn|2)zn + iβ
N

N∑
m=1

(zm − zn)

Write as equations for magnitude and phasez = reiθ

˙̄θn = ω̄n + α(1− rn2)+ βR
rn

cosθ̄n

ṙn = (1− rn2)rn + βR sin θ̄n

with θ̄n = θn −2, ω̄n = ωn − α − β − 2̇
Self consistency condition

R = N−1
∑
n

rn e
iθ̄n
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Results

• Linear instability of unsynchronizedR = 0 state (for Lorentzian,

triangular, top-hatg(ω))

� Order parameter frequencẏ2 not trivially given byg(ω)

� For fixedα > αmin there aretwo values ofβ giving linear

instability

• Fully locked state

� Again order parameter frequency2̇ not trivially given by

g(ω)

� Linear instability may be through stationary or Hopf

bifurcation

• Simulations of amplitude-phase model for up to 10000

oscillators with all-to-all coupling
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Results for a triangular distribution

ω

g(ω)

w/2-w/2

2/w

Show results forw = 2…



Back Forward

STATPHYS 22:Bangalore, 2004 12

0

0 . 5

1 . 0

β

α

Unsynchronized + SynchronizedUnsynchronized

Synchronized

2 Synchronized
States

Fully locked

Partially locked

0 1 2 3 4



Back Forward

STATPHYS 22:Bangalore, 2004 13

0

0 . 5

1 . 0

β

α

Unsynchronized + SynchronizedUnsynchronized

Synchronized

2 Synchronized
States

Fully locked

Partially locked

0 1 2 3 4



Back Forward

STATPHYS 22:Bangalore, 2004 14



Back Forward

STATPHYS 22:Bangalore, 2004 15

0

0 . 5

1 . 0

β

α

Unsynchronized + SynchronizedUnsynchronized

Synchronized

2 Synchronized
States

Fully locked

Partially locked

0 1 2 3 4



Back Forward

STATPHYS 22:Bangalore, 2004 16



Back Forward

STATPHYS 22:Bangalore, 2004 17

0

0 . 5

1 . 0

β

α

Unsynchronized + SynchronizedUnsynchronized

Synchronized

2 Synchronized
States

Fully locked

Partially locked

0 1 2 3 4



Back Forward

STATPHYS 22:Bangalore, 2004 18



Back Forward

STATPHYS 22:Bangalore, 2004 19

0

0 . 5

1 . 0

β

α

Unsynchronized + SynchronizedUnsynchronized

Synchronized

2 Synchronized
States

Fully locked

Partially locked

0 1 2 3 4



Back Forward

STATPHYS 22:Bangalore, 2004 20



Back Forward

STATPHYS 22:Bangalore, 2004 21

0

0 . 5

1 . 0

β

α

Unsynchronized + SynchronizedUnsynchronized

Synchronized

2 Synchronized
States

Fully locked

Partially locked

0 1 2 3 4



Back Forward

STATPHYS 22:Bangalore, 2004 22

Conclusions
Micromechanical devices suggests a model for synchronization due to

reactive coupling and nonlinear frequency pulling

Linear stability results for unsynchronized state (triangular, tophat, and

Lorentzian distributions) and fully locked state (triangular, tophat)

Together with simulations yields a rich phase diagram of synchronized

behavior

Novel state that is “synchronized”R > 0 but not frequency locked (no

oscillator withθ̇ = 2̇)


