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Array of u-scale oscillators
[From Buks and Roukes J. MEM&1, 802 (2002)]
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Single crystal silicon [From Craighead, Scier®g®, 1532 (2000)]
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Self-Oscillations
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MicroElectroMechanical Systems and NEMS
Arrays of tiny mechanical oscillators:

« driven, dissipative= nonequilibrium

e nonlinear

« collective

* NOISY

 (potentially) quantum

Goals

* Apply knowledge from nonlinear dynamics, pattern formation etc. to
technologically important questions

 Investigate pattern formation and nonlinear dynamics in new regimes

« Study new aspects of old questions
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Modelling

0=x, +x,
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Modelling

0=x, +x,

+ 8, x5 with §,, taken from distributiory (5,,)
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Modelling

0=x, +x,

+ dnxn

+ > Duyn(xy —x,)  reactive coupling
m
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Modelling

0=x, +x,

~+ 8, x5
+ Z Dpm(xm — xn)
m

- Z Ynm (Xm — Xn) linear damping
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Modelling

0=x, +x,

+ 6,,x,
+ Z Dy (X — xp)
m

+x>  nonlinear stiffening
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Modelling

0=1xXx, +x,

+ 6,,x,
+ Z Dy (X — x1)
m

m
+ x,::’

+n [ (X1 — Xn) 2 (Gongt — Xn) — (X — Xn—1)% (% — Xn—1)] nonlinear damping
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Modelling

0=x, +x,

+ 6,,x,
+ Z Dy (X — xp)
m

m
+ x,::’

T [(xn—l—l — xn)z().cn—l—l — Xp) — (X — xn—l)z().cn — xn—l)]

—yi,(1—x2)  energy input
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Modelling

0=x, +x,

+ 6,,x,
+ Z Dy (X — xp)
m

m
+ x,::’

T [(xn—l—l — xn)z(jcn—l—l — Xp) — (X — xn—l)z().cn — xn—l)]

+gp COS[(2+ Swp)t] xy, parametric drive
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Modelling

0=x, +x,

+ 6,,x,
+ Z Dy (X — xp)
m

m
+ x,::’

T [(xn—l—l — xn)z().cn—l—l — Xp) — (X — xn—l)z().cn — xn—l)]

+gp COS[(24 Swp)t] x,
+ gpcos[(1+ dwp)t] signal
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Modelling

0=x, +x,

+ 6,,x,
+ Z Dy (X — xp)
m

m
+ x,?

T [(xn—l—l — xn)z().cn—l—l — Xp) — (X — xn—l)z().cn — xn—l)]
+gp COS[(24 Swp)t] x,

+ gpCos[(1 + Swp)i]
+ Noise
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Modelling

0=1xXx, +x,
+ 6,,x,

+ Z Dy (X — xp)
m

m
+ x,?

T [(xn—l—l — xn)z().cn—l—l — Xp) — (X — xn—l)z().cn — xn—l)]
+gp COS[(24 Swp)t] x,

+ gpCos[(1 + Swp)i]
+ Noise
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Theoretical approach

Oscillators at frequency unity + small corrections

Assume dispersion, coupling, damping, driving, noise, and nonlinear
terms are small.

Introduce small parameterwith ¢” characterizing the size of these
various terms.

Then with the “slow” time scal@& = ¢t

Xn(t) = &2 [An(T)e" + cc.] +extP@) + ...

derive equations fad A, /dT = - - -.
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Nonlinearity: Frequency pulling

A small large

driving driving

Amplitude x/g,

Frequency w,
Fn + VXn + Xn + x; = gpCOLwpt)
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Experiment

Platinum Wire [Husain et al., Appl. Phys. Le83, 1240 (2003)]
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Results
10 1 1 1
10
530 pV drive
S
81 = l -
~5
=
o
3 o> -
- 10 - “===-|1 N / |nccr"e§s|n9
= 053 Frequency (MHz) 105. /' rve
~ 4 ;
2
0
105.05 105.10 105.15 105.20 105.25
Frequency (MHz)

Back Forward



Theory and Applications of Coupled Cell Networkdewton Institute, September, 2005

Synchronization
Huygen’s Clocks (1665)

e

From: Bennett, Schatz, Rockwood, and Wiesenfeld (Proc. Roy. Soc.
Lond. 2002)
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Paradigm |: Synchronization occurs through dissipation acting on the
phase differences

 Huygen’s clocks (cf. Bennett, Schatz, Rockwood, and Wiesenfeld)

* Winfree-Kuramoto phase equation

én = Wp — Z Km SINB, — On+m)
m

with w, taken from distributiory (w). Continuum limit (short range
coupling)
6 = w(x) + KV + 0(V(VH)3)

—phasediffusion, not propagation (eg. ngve)? term)
« Aronson, Ermentrout and Kopell analysis of two coupled oscillators

« Matthews, Mirollo and Strogatz magnitude-phase model
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Back

Synchronization in MEMS= alternative mechanism

Paradigm Il: Synchronization occurs by nonlinear frequency pulling and
reactive coupling

MEMS equation

O=X,+ A+ wy)x, —v(d— 'x;/%)'xl’l + axs + Z Dy (X — Xn)
m

leads to

An=i(on —|An)An+ A= [AuD)An +i ) Bun(Am — An)

witha = o, D = B.

(cf. Synchronizatiomy Pikovsky, Rosenblum, and Kurths)
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Back

Synchronization in MEMS= alternative mechanism

Paradigm Il: Synchronization occurs by nonlinear frequency pulling and
reactive coupling

MEMS equation

O0=Xx,+ A+ w,)x, —v(l— xy%)xn + axs + Z Dy (X — Xn)
m

leads to

An=i(on —|An)An+ A= [AuD)An +i ) Bun(Am — An)

witha = o, D = B.
(cf. Synchronizatiomy Pikovsky, Rosenblum, and Kurths)

Analyze mean field version (all-to-all coupling3;., — B/N
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Definitions of Synchronization

1. Order parameter
U=N"'Y A, =N"1> re% =Re®
n n

Synchronization occurs R # 0
2. Full locking: 6, = € for all the oscillators

3. Partial frequency locking

(;)n _ |Im Qn(T) T Qn(o)

T — 00

and thenp,, = Q for someO (N) subset of oscillators
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Results for the mean field phase model (Kuramoto 1975)

. K _
On = w, — N ;Sm(en — Ontm)

A | ;
Unlocked : Partially locked Fully locked
1.0}
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Calculations[MCC, zumdieck, Lifshitz, and Rogers (2004)]

e Analytics

¢ Linear instability of unsynchronizeft = O state (for Lorentzian,
triangular, top-hat (w))

¢ Linear instability of fully locked state

* Numerical simulations of amplitude-phase model for up to 10000
oscillators with all-to-all coupling
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Analytics: Basics
« Label the oscillators by bare frequenoy= w,

« Write equations in magnitude-phase form

_ 5 BR -
db =w+a(l—r°)+ —cosf
r

dr =1 —rdr+ BRsiné

whered = 6 — O is the oscillator phase relative to the order
parameterand = w —a — f — Q

 For largex, narrow distribution;,» — 0, r ~ 1 so that
r’~1+ BRsing

Then
d.® ~ & — aBRsind

Kuramoto equatior= synchronization foa > 2(mg(0)) 1
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Onset from unsynchronized state (cf. Matthews et al., 1991)
Introduce distributiorn (r, 6, @, 1)

Self-consistency condition
R = <rei9—> = /d@g(@)/rdrdép(r,é,d), t)reié.

whereg(w) is the distribution of oscillator frequencies expressed in terms
of the shifted frequency.

Imaginary (transverse) part
/d@g(@) / rdrd@p(r,0, o, t)rsind = 0.
Real (longitudinal) part

/da_)g(c?))/rdrdé_,o(r,é,c?), t)r cosh = R.
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Ansatz

o(r,0,d,1) = 2rr) 8[r —1—er(0,d, DL + & f10, @, 1)]
R =¢R1(1)

with r1(8, @, 1), f1(0, @, t), R1(t) o e*

Substitute into equation of motion

BR __0+2 sin® © cosd
ry = —
TP @24 (u + 22 @2 + (A + 2)2

fi=pBRa[ -]

Insertp into self-consistency condition

)L — 07 gives onset conditiof.(«) and order parameter frequen@y
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Full locking

_ 5 BR -
db =w+a(l—r°)+ —cosh
r

@r=(l—r%r+ﬂRSMé
Locking assumption
dﬂ" = O, dté =0
Analysis in terms ofocking forceF ()

_ - BR .= -
w=F(@)= T(a SInfd — cosH)

with
(1—r®)r = —BRsinb

Back
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Example

0=10,BR=12

/ §
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Solution for narrow distribution

F
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Solution for wider distribution

F

Back Forward



Theory and Applications of Coupled Cell Networkdewton Institute, September, 2005 26

Critical distribution width

-
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Simulations

Back
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Back

Results

Order parameter frequen€y = © not trivially given byg(w)
For fixeda > amin there arégwo values of giving linear instability

Large instability may be to a synchronized state with no frequency
locking

Linear instability of fully locked state may be through stationary or
Hopf bifurcation

No “amplitude death” as in Matthews et al.
Complicated phase diagram with regions of coexisting states

Hysteresis common on parameter sweeps

Forward
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Results for a triangular distribution

-w/2 w/2

Show results fow = 2...
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1.0
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state unstable
ado.5F i
Unsynchronized
state stable
e
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Top-Hatg(0) =1

1.0

0.8

0.6

0.4

0.2

Back

Forward

42



Theory and Applications of Coupled Cell Networkdewton Institute, September, 2005

Lorentziang(0) =1
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Wider Lorentziarng(0) = 0.5
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Large amplitude synchronized state
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Parametric drive in MEMS

¥4+ yx+ L+ gpcoswp)x +x°=0

oscillation ofparameterof equation—here the spring constant

x = 0 remains a solution in the absence of noise

parametric drive decreases effective dissipation (for one quadrature of
oscillations)

¢ amplificationfor small drive amplitudes

¢ Instability for large enough drive amplitudes

strongest response far, = 2
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MEMS Elastic parametric drive

[Harrington and Roukes]
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Amplification
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[Harrington and Roukes]
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Parametric instability in arrays of oscillators

NN

NN

[Buks and Roukes, 2001]
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Simple intuition

Frequency w

'kP P ma
Wave vector k

Above the parametric instability nonlinearity is essential to understand the
oscillations.

 Mode Competition

e Pattern formation
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Experimental results

18
16
14
12

10

DC Bias Voltage, V,. (V)

174 175 176 177 178

Frequency, f (KHz)

Back

179

180

Forward

51



Theory and Applications of Coupled Cell Networkdewton Institute, September, 2005

One beam theory

Fixed g,
(ol

(@2 = |nclude nonlinear damping
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dA h . .

Ziwd—T — éA*em +iwy A+ 3|AI°A + iwn|Al?A = 0, A(T) = ae' 27
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Many beam theory

O:)'én—l—xn—l—x,f’

+ A%(1+ gp COS[(2 + £Qp)]) (Xnt1 — 20, + Xp-1)
— ¥y (Xpy1 — 2%, + Xp-1)
+ 1 [t = 20) 2 Chnt — %n) — (o — X0 1)2 (o — 1)
Local Duffing (elasticity) + Electrostatic Coupling (dc and modulated) +

Dissipation (currents) + Nonlinear Damping (also currents)

[Lifshitz and MCC Phys. Rev. B67, 134302 (2003)]
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2 beam periodic solutions

stable
unstable

15

Intensity of symmetric modgx, | and antisymmetric mode,, | as

frequency is scanned.
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2 beam periodic solutions

stable
unstable

15

15 -5
Q

The green lines correspond to a single excited mode, the remainder to
coupled modes.
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Hysteresis for two beams
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Simulations of 67 Beams
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Many beams

Single oscillator
Vary pump frequency

Many oscillators
Fixed pump frequency

/
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=2 o patterns /
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= o /
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2 2 ,
a L &)
amplification uniform state stable
5 0(K)=00,/2
Drive frequency w, Wavevector k

Continuum approximation: new amplitude equation
[Bromberg, MCC and Lifshitz (preprint, 2005)]

A 92A 2 dA JA*
— A4+ — +i=[4]|A1°— 4+ A2Z—— ) —2|A?
+ +1i ( |A| oy ax) |A|

aT X2 3
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Conclusions

* |I've described models of nonlinear oscillators motivated by considerations of arrays
of nanomechanical devices.

» Collective effects
¢ Synchronization due to nonlinear frequency pulling and reactive coupling
¢ Parametrically driven arrays

» As devices get smaller (e.g. carbon nanotubes) thermal fluctuations and quantum
effects will become important

¢ Noise induced transitions between driven (nonequilibrium) states

» Single nonlinear oscillator [Aldridge and Cleland, Phys. Rev. 1921t156403
(2005) ]

» Collective states in arrays of oscillators

o Measurement of discrete levels in quantum harmonic oscillator [Santamore,
Doherty, and MCC, Phys. ReB.70, 144301 (2004)]
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