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• Nonlinearity
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Array ofµ-scale oscillators
[From Buks and Roukes J. MEMS.11, 802 (2002)]
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Single crystal silicon [From Craighead, Science290, 1532 (2000)]
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Diamond Film [From Sekaric et al., Appl. Phys. Lett.81, 4445 (2002)]
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Self-Oscillations

[Zalalutdinov et al., Appl. Phys. Lett.79, 695 (2001)]
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MicroElectroMechanical Systems and NEMS

Arrays of tiny mechanical oscillators:

• driven, dissipative⇒ nonequilibrium

• nonlinear

• collective

• noisy

• (potentially) quantum

Goals

• Apply knowledge from nonlinear dynamics, pattern formation etc. to

technologically important questions

• Investigate pattern formation and nonlinear dynamics in new regimes

• Study new aspects of old questions
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Modelling

0= ẍn + xn
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Modelling

0= ẍn + xn
+ δnxn with δn taken from distributiong(δn)
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Modelling

0= ẍn + xn
+ δnxn
+
∑
m

Dnm(xm − xn) reactive coupling
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Modelling

0= ẍn + xn
+ δnxn
+
∑
m

Dnm(xm − xn)

−
∑
m

γ̄nm(ẋm − ẋn) linear damping
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Modelling

0= ẍn + xn
+ δnxn
+
∑
m

Dnm(xm − xn)

−
∑
m

γ̄nm(ẋm − ẋn)

+ x3
n nonlinear stiffening
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Modelling

0= ẍn + xn
+ δnxn
+
∑
m

Dnm(xm − xn)

−
∑
m

γ̄nm(ẋm − ẋn)

+ x3
n

+η [(xn+1− xn)2(ẋn+1− ẋn)− (xn − xn−1)
2(ẋn − ẋn−1)

]
nonlinear damping
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Modelling

0= ẍn + xn
+ δnxn
+
∑
m

Dnm(xm − xn)

−
∑
m

γ̄nm(ẋm − ẋn)

+ x3
n

+η [(xn+1− xn)2(ẋn+1− ẋn)− (xn − xn−1)
2(ẋn − ẋn−1)

]
−γ ẋn(1− x2

n) energy input
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Modelling

0= ẍn + xn
+ δnxn
+
∑
m

Dnm(xm − xn)

−
∑
m

γ̄nm(ẋm − ẋn)

+ x3
n

+η [(xn+1− xn)2(ẋn+1− ẋn)− (xn − xn−1)
2(ẋn − ẋn−1)

]
+gP cos[(2+ δωP )t ] xn parametric drive
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Modelling

0= ẍn + xn
+ δnxn
+
∑
m

Dnm(xm − xn)

−
∑
m

γ̄nm(ẋm − ẋn)

+ x3
n

+η [(xn+1− xn)2(ẋn+1− ẋn)− (xn − xn−1)
2(ẋn − ẋn−1)

]
+gP cos[(2+ δωP )t ] xn

+ gDcos[(1+ δωD)t ] signal
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Modelling

0= ẍn + xn
+ δnxn
+
∑
m

Dnm(xm − xn)

−
∑
m

γ̄nm(ẋm − ẋn)

+ x3
n

+η [(xn+1− xn)2(ẋn+1− ẋn)− (xn − xn−1)
2(ẋn − ẋn−1)

]
+gP cos[(2+ δωP )t ] xn

+ gDcos[(1+ δωD)t ]
+ Noise
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Modelling

0= ẍn + xn
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+ gDcos[(1+ δωD)t ]
+ Noise
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Theoretical approach

• Oscillators at frequency unity + small corrections

• Assume dispersion, coupling, damping, driving, noise, and nonlinear

terms are small.

• Introduce small parameterε with εp characterizing the size of these

various terms.

• Then with the “slow” time scaleT = εt
xn(t) = ε1/2 [An(T )eit + c.c.]+ εx(1)n (t)+ . . .

derive equations fordAn/dT = · · · .
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Nonlinearity: Frequency pulling

A
m

pl
itu

de
 x

/g
D

Frequency ωD

small
driving

large
driving

ẍn + γ ẋn + xn + x3
n = gDcos(ωDt)
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Experiment

Platinum Wire [Husain et al., Appl. Phys. Lett.83, 1240 (2003)]



Back Forward

Theory and Applications of Coupled Cell Networks:Newton Institute, September, 2005 12

Results
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Synchronization

Huygen’s Clocks (1665)

From: Bennett, Schatz, Rockwood, and Wiesenfeld (Proc. Roy. Soc.

Lond. 2002)
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Paradigm I: Synchronization occurs through dissipation acting on the

phase differences

• Huygen’s clocks (cf. Bennett, Schatz, Rockwood, and Wiesenfeld)

• Winfree-Kuramoto phase equation

θ̇n = ωn −
∑
m

Knm sin(θn − θn+m)

with ωn taken from distributiong(ω). Continuum limit (short range

coupling)

θ̇ = ω(x)+K∇2θ +O(∇(∇θ)3)
—phasediffusion, not propagation (eg. no(∇θ)2 term)

• Aronson, Ermentrout and Kopell analysis of two coupled oscillators

• Matthews, Mirollo and Strogatz magnitude-phase model
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Synchronization in MEMS⇒ alternative mechanism

Paradigm II: Synchronization occurs by nonlinear frequency pulling and

reactive coupling

MEMS equation

0= ẍn + (1+ ωn)xn − ν(1− x2
n)ẋn + ax3

n +
∑
m

Dnm(xm − xn)

leads to

Ȧn = i(ωn − α |An|2)An + (1− |An|2)An + i
∑
m

βmn(Am − An)

with a ⇒ α, D ⇒ β.

(cf. Synchronizationby Pikovsky, Rosenblum, and Kurths)
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Synchronization in MEMS⇒ alternative mechanism

Paradigm II: Synchronization occurs by nonlinear frequency pulling and

reactive coupling

MEMS equation

0= ẍn + (1+ ωn)xn − ν(1− x2
n)ẋn + ax3

n +
∑
m

Dnm(xm − xn)

leads to

Ȧn = i(ωn − α |An|2)An + (1− |An|2)An + i
∑
m

βmn(Am − An)

with a ⇒ α, D ⇒ β.

(cf. Synchronizationby Pikovsky, Rosenblum, and Kurths)

Analyze mean field version (all-to-all coupling):βmn→ β/N
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Definitions of Synchronization

1. Order parameter

9 = N−1
∑
n

An = N−1
∑
n

rn e
iθn = R ei2

Synchronization occurs ifR 6= 0

2. Full locking: θ̇n = � for all the oscillators

3. Partial frequency locking

ω̄n = lim
T→∞

θn(T )− θn(0)
T

and thenω̄n = � for someO(N) subset of oscillators

4. …
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Results for the mean field phase model (Kuramoto 1975)

θ̇n = ωn − K
N

∑
m

sin(θn − θn+m)

K

R

1.0

Kc

Fully lockedPartially lockedUnlocked
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Calculations[MCC, Zumdieck, Lifshitz, and Rogers (2004)]

• Analytics

� Linear instability of unsynchronizedR = 0 state (for Lorentzian,

triangular, top-hatg(ω))

� Linear instability of fully locked state

• Numerical simulations of amplitude-phase model for up to 10000

oscillators with all-to-all coupling
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Analytics: Basics

• Label the oscillators by bare frequencyω = ωn
• Write equations in magnitude-phase form

dt θ̄ = ω̄ + α(1− r2)+ βR
r

cosθ̄

dt r = (1− r2)r + βR sin θ̄

whereθ̄ = θ −2 is the oscillator phase relative to the order

parameter and̄ω = ω − α − β −�
• For largeα, narrow distributiondtr → 0, r ' 1 so that

r2 ' 1+ βR sin θ̄

Then

dt θ̄ ' ω̄ − αβR sin θ̄

Kuramoto equation⇒ synchronization forαβ > 2(πg(0))−1
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Onset from unsynchronized state (cf. Matthews et al., 1991)

Introduce distributionρ(r, θ̄ , ω̄, t)

Self-consistency condition

R =
〈
reiθ̄

〉
=
∫
dω̄ḡ(ω̄)

∫
r dr dθ̄ρ(r, θ̄ , ω̄, t)reiθ̄ .

whereḡ(ω̄) is the distribution of oscillator frequencies expressed in terms

of the shifted frequencȳω.

Imaginary (transverse) part∫
dω̄ḡ(ω̄)

∫
r dr dθ̄ρ(r, θ̄ , ω̄, t)r sin θ̄ = 0.

Real (longitudinal) part∫
dω̄ḡ(ω̄)

∫
r dr dθ̄ρ(r, θ̄ , ω̄, t)r cosθ̄ = R.
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• Ansatz

ρ(r, θ, ω̄, t) = (2πr)−1δ[r − 1− εr1(θ̄ , ω̄, t)][1 + εf1(θ̄ , ω̄, t)]

R = εR1(t)

with r1(θ̄ , ω̄, t), f1(θ̄ , ω̄, t), R1(t) ∝ eλt
• Substitute into equation of motion

r1 = βR1

[
(λ+ 2)

ω̄2+ (λ+ 2)2
sin θ̄ − ω̄

ω̄2+ (λ+ 2)2
cosθ̄

]
f1 = βR1 [· · · ]

• Insertρ into self-consistency condition

• λ→ 0+ gives onset conditionβc(α) and order parameter frequency�
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Full locking

dt θ̄ = ω̄ + α(1− r2)+ βR
r

cosθ̄

dt r = (1− r2)r + βR sin θ̄

Locking assumption

dtr = 0, dt θ̄ = 0

Analysis in terms oflocking forceF(θ̄)

ω̄ = F(θ̄) = βR

r
(α sin θ̄ − cosθ̄ )

with

(1− r2)r = −βR sin θ̄
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Example

F λ

α = 1.0, βR = 1.2

θ
θ
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Solution for narrow distribution

F

θ
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Solution for wider distribution

F

θ
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Critical distribution width

F

θ
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Simulations
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Results

• Order parameter frequency� = 2̇ not trivially given byg(ω)

• For fixedα > αmin there aretwo values ofβ giving linear instability

• Largeβ instability may be to a synchronized state with no frequency

locking

• Linear instability of fully locked state may be through stationary or

Hopf bifurcation

• No “amplitude death” as in Matthews et al.

• Complicated phase diagram with regions of coexisting states

• Hysteresis common on parameter sweeps
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Results for a triangular distribution

ω

g(ω)

w/2-w/2

2/w

Show results forw = 2…
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Top-Hatg(0) = 1
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Lorentziang(0) = 1
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Wider Lorentziang(0) = 0.5
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Large amplitude synchronized state
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Parametric drive in MEMS

ẍ + γ ẋ + (1+ gP cosωP t)x + x3 = 0

• oscillation ofparameterof equation—here the spring constant

• x = 0 remains a solution in the absence of noise

• parametric drive decreases effective dissipation (for one quadrature of

oscillations)

� amplificationfor small drive amplitudes

� instability for large enough drive amplitudes

• strongest response forωp = 2
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MEMS Elastic parametric drive

[Harrington and Roukes]
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Amplification

[Harrington and Roukes]
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Parametric instability in arrays of oscillators

[Buks and Roukes, 2001]
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Simple intuition

Wave vector k

Frequency ωωωω
ωωωωP

ωωωωP/2

ππππ/a−−−−ππππ/a kP-kP

Above the parametric instability nonlinearity is essential to understand the

oscillations.

• Mode Competition

• Pattern formation
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Experimental results
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One beam theory

Drive frequency ωP

2

D
riv

e 
am

pl
itu

de
 g

P

instability

Drive frequency ωP

2
In

te
ns

ity
 |x

|2

amplification

Fixed gP

           Include nonlinear damping

2iω
dA

dT
− h

2
A∗ei�T + iωγA+ 3|A|2A+ iωη|A|2A = 0, A(T )⇒ aei

�
2 T
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Many beam theory

Fixed
Fixed

0= ẍn + xn + x3
n

+12(1+ gP cos[(2+ ε�P )t ])(xn+1− 2xn + xn−1)

− γ (ẋn+1− 2ẋn + ẋn−1)

+ η [(xn+1− xn)2(ẋn+1− ẋn)− (xn − xn−1)
2(ẋn − ẋn−1)

]
Local Duffing (elasticity) + Electrostatic Coupling (dc and modulated) +

Dissipation (currents) + Nonlinear Damping (also currents)

[Lifshitz and MCC Phys. Rev. B67, 134302 (2003)]
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2 beam periodic solutions

|xs|
2 |xu|

2

Ω Ω

stable
unstable

Intensity of symmetric mode|xs |2 and antisymmetric mode|xu|2 as

frequency is scanned.
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2 beam periodic solutions

|xs|
2 |xu|

2

Ω Ω

stable
unstable

The green lines correspond to a single excited mode, the remainder to

coupled modes.
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Hysteresis for two beams
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Simulations of 67 Beams

ÿ
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Many beams

Drive frequency ωP
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instability

amplification

Wavevector k

D
riv
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P

patterns

 uniform state stable

Single oscillator
Vary pump frequency

ω(k)=ωP/2

Many oscillators
Fixed pump frequency

Continuum approximation: new amplitude equation

[Bromberg, MCC and Lifshitz (preprint, 2005)]

∂A

∂T
= A+ ∂

2A

∂X2
+ i2

3

(
4 |A|2 ∂A

∂X
+ A2∂A

∗

∂X

)
− 2 |A|2A− |A|4A
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Conclusions

• I’ve described models of nonlinear oscillators motivated by considerations of arrays

of nanomechanical devices.

• Collective effects

� Synchronization due to nonlinear frequency pulling and reactive coupling

� Parametrically driven arrays

• As devices get smaller (e.g. carbon nanotubes) thermal fluctuations and quantum

effects will become important

� Noise induced transitions between driven (nonequilibrium) states

? Single nonlinear oscillator [Aldridge and Cleland, Phys. Rev. Lett.94, 156403

(2005) ]

? Collective states in arrays of oscillators

� Measurement of discrete levels in quantum harmonic oscillator [Santamore,

Doherty, and MCC, Phys. Rev.B70, 144301 (2004)]


