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The start of the story

Evidence for a New Phase of Solid He3 T

D. D. Osheroff, R. C. Richardson, and D. M. Lee
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14850

(Received 10 February 1972)

Measurements of the melting pressure of a sample of He® containing less than 40-ppm
He! impurities, self-cooled to below 2 mK in a Pomeranchuk compression cell, indicate
the existence of a new phase in solid He® below 2.7 mK of a fundamentally different na-
ture than the anticipated antiferromagnetically ordered state. At lower temperatures,
evidence of possibly a further transition is observed. We discuss these pressure mea-
surements and supporting temperature measurements,
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Making amends

Nuclear Antiferromagnetic Resonance in Solid 3He

D. D. Osheroff, M. C. Cross, and D. S. Fisher
Bell Labovatovies, Muvray Hill, New Jersey 07974
(Received 1 February 1980)

Detailed measurements of the low-field antiferromagnetic resonance spectrum of spin-
ordered bee 3He exhibit large shifts from the Larmor frequency, with a zero-field reso-
nant frequency near zero temperature of ©,/2m =~ 825 kHz. Analysis of the spectrum leads
to stringent constraints on possible sublattice structures. The temperature dependence
of Q) shows low-temperature behavior expected from spin-wave theory, and indicates a
first-order transition at 1.03 mK.
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Antiferromagnetic He3: expectations
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Antiferromagnetic He3: expectations
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Antiferromagnetic He3: expectations

(Caltech) Phases: He3 to NEMS Osl 5: October 2010 6/25



Doug’s data
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NMR in solid He3: spectrum

Osheroff, MCC, Fisher (1980)
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Antiferromagnetic He3: U2D2 Phase

)
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NMR in the high field phase(s)

Osheroff and MCC (1987)
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Magnetic Resonance Force Microscopy (MRFM)

Midzor, Wigen, Pelekhov, Chen, Hammel, Roukes, 2000
Urban, Putilin, Wigen, Liou, MCC, Hammel, Roukes, 2007
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Nonlinearity
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Amplitude v. frequency offset for different drives

Bill Brinkman: Landau and Lifshitz Mechanics §29
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Nanomechanical systems

Roukes group, courtesy Rassul Karabalin
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Nonlinearity in nanomechanical systems: Duffing response

Kozinsky, Postma, Kogan, Husain, and Roukes, 2007

Doubly-clamped platinum nanowire 2.25um x 35nm
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Phases in Superfluid He3

m Superfluidity in the A phase

m Phase is the broken symmetry variable of the quantum mechanical phase
m V x [ gives supercurrents
m VA gives supercurrents — but reduced by (7,./E )2

m Exotic Ginzburg-Landau theory

m A and B phases: fun with interfaces (and nucleation)

m NMR as Josephson effect coupling phases of different spin components
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Phases in a nanomechanical oscillator

Phase is the broken symmetry variable corresponding to the Hopf bifurcation to
oscillations (time translation symmetry)

Consequences for frequency stability of oscillators. . .
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Nanomechanical resonators and oscillators

Roukes group, courtesy Luis Villanueva
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Nanomechanical resonators and oscillators

Roukes group, courtesy Luis Villanueva
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Evading amplifier noise in oscillators

Greywall, Yurke, Busch, Pargellis, and Willett, 1994

For saturated feedback loop: bias is constant phase
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Phase response of driven
nonlinear resonator at the o,
Duffing critical amplitude.
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Frequency fluctuations of oscillator reduced by tuning to nonlinear critical point
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Nanomechanical arrays

Roukes group, courtesy Rassul Karabalin
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Nanomechanical arrays

Roukes group




Phases in many nanomechanical oscillators

Oscillator displacement (e.g. amplitude of fundamental mode of beam)

un =Re [y ™| with Y, = [yl

In long wavelength limit v (r) satisfies the Complex Ginzburg-Landau Equation

% =Y+ (K +iB)\V2 — (1 + i) +io)y 2y

with w (r) the random component of the frequencies

What are the phases (states) of the oscillator phases?
m disorderd
m frequency locked (finite fraction have same frequency)

m phase locked (nonzero (V) e.)
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Synchronized phases in mean field theory

MCC, Rogers, Lifshitz, Zumdieck, 2006

K=0; Top-hat frequency distribution, width = 1
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Short range model (no randomness)
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