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Outline

e Motivation: MEMS and NEMS

* BIONEMS: Fluctuations in the linear regime
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ey ¥6.508

[From M. R. Roukes, Caltech]
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Single crystal silicon [From Craighead, Scier®g®, 1532 (2000)]
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Diamond Film [From Sekaric et al., Appl. Phys. Le#tl, 4445 (2002)]
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Array of u-scale oscillators
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[From Buks and Roukes J. MEM&1, 802 (2002)]
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Self-Oscillations
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[Zalalutdinov et al., Appl. Phys. Let?9, 695 (2001)]
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MicroElectroMechanical Systems and NEMS
Tiny mechanical oscillators:
 driven, dissipative= nonequilibrium

nonlinear

collective (arrays)

noisy

(potentially) quantum
Goals

* Apply knowledge from statistical mechanics, nonlinear dynamics,
pattern formation etc. to technologically important questions

 Investigate stochastic and nonlinear dynamics, and pattern formation
INn new regimes
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BioNEMS - Single BioMolecule Detector/Probe

fluidic I/O
(16 ports)

top fluidic layer

microfluidic

BioNEMS channels

microfluidic
flow channel

individual
BioNEMS
sensors

CIT
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BIoNEMS Prototype

w = 2.5, t=130nm

il

(Arlett et. al, Nobel Symposium 131, August 2005)
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Example Design Parameters

b
-— Wall

Localized
stress ;'

Localized
stress

Dimensions: L = 3u, w = 100nm,t = 30nm,L1 = 0.6, b = 33nm
Material: p = 2230Kg/n?, E = 1.25 x 10'"*N/m?

Results: Spring constanK = 8.7mN/m; vacuum frequencyy ~ 6MHz
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Atomic Force Microscopy (AFM)

» »l B[

S4700 150k 12 3rmm =300 SE(LN 100

Commercial AFM cantilever (Olympus) DNA molecule in water
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Noise In micro-cantilevers
Thermal fluctuations (Brownian motion) important for:
 BIONEMS: detection scheme

 AFM: calibration

Goals:
« Correct formulation of fluctuations for analytic calculations

* Practical scheme for numerical calculations of realistic geometries
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Previous approach (Sader 1998)

 Model molecular collisions with cantilever as white noise force
uniformly distributed along cantilever

« Calculate modal responsg(w) for periodic driving forceF (w)
(resonance curves)

x Interesting frequency dependent mass loading and damping from
coupling to fluid

« Calculate fluctuation of tip displacement as sum of mode responses
for constant F (w) |2
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Problems

This approaches is formallyicorrectandhard to implementor realistic
geometries and strong damping:

* Noise force is not white
* Noise force is not uniformly distributed along surface
* Mode fluctuations are not in general independent

o Difficult to calculate coupled elastic-fluid modes, and many needed
for strong damping
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Fluid Dynamics Issues

ou
ot

+ii-Vii=—-Vp+ V2,

-

V. 0

<
I

with v the kinematic viscosity/p.

Fluid dynamics is (relatively) easy if we can neglect the inertial terms.

For typical BIoONEMS/AFM:

e i - Vii = O(u?) is negligible because of tiny oscillation amplitudes

* Important parameter is the Strouhal number

2
ww
S = ~ 1.6
4y
w frequency Z x 1 MHz
w width (1
v kinematic viscosity 106 m2s—1

Low Reynolds number flow: linear ...but can't talse= 0
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Simple Picture (Sader)

Potential flow

00000
« AR

Diffusing / ..... Lt

vorticity
— S-l/z <«

Back

Forward

17



Noise, AFMs, and Nanomechanical Biosensorsancaster University , November, 2005

Back

Stokes Theory

Viscous force on sphere of radiusmoving with speed is

F/v = 6mpva

Viscous force per unit length of cylinder of radiuss given by
y =F/v=mpv xSImTI'(S)

with
4i K1(—i/iS)
ViSKo(—iv/iS)

Effective mass per unit length from fluid

r'S) =1+

Rel'(S)

_ 2 ~
M =ma“pRel'(S) = O ~ mTS)

(Other parametef =

x p w __ Mmass of cylinder of fluid__ 2)
4 ps t — mass of cantilever
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18



Noise, AFMs, and Nanomechanical Biosensorsancaster University , November, 2005 19

Q, y/Impv

For smallS: ST(S) — I
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New approach: fluctuation-dissipation theorem
(Paul and MCC, 2004)

Equilibrium fluctuations can be related to the decay of a prepared initial
condition

 (near equilibrium) thermodynamics: Onsager regression hypothesis

e statistical mechanics: fluctuation-dissipation theorem, linear response
theory, Kubo formalism ...
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New approach: fluctuation-dissipation theorem
(Paul and MCC, 2004)

Equilibrium fluctuations can be related to the decay of a prepared initial
condition

 (near equilibrium) thermodynamics: Onsager regression hypothesis

e statistical mechanics: fluctuation-dissipation theorem, linear response
theory, Kubo formalism ...

Consider Hamiltonian
H = Hy— F(t)A

Hp unperturbed Hamiltonian

A(r1...ry,p1...pNy) System observable
F(t) (small) time dependent force
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Back

H=H  +AH

u

equilibrium
nder H,+AH

p=p,(rN,p")

H

:HO
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()
A
_ F _
H=H,+AH 0 H=H,
v
t
A<B(t)>
S o~
N t
A (B(1))

(6B()0A0))e = kpT

Fo
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Derivation

(e.g. see “Introduction to Modern Statistical Mechanics'Ghandler)
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Derivation
(e.g. see “Introduction to Modern Statistical Mechanics'Ghandler)

To calculate the change in a measuremd&tit)) due to the application of a small field
F (1) that gives a perturbation to the HamiltoniartH = — F(t) A.
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Back

Derivation
(e.g. see “Introduction to Modern Statistical Mechanics'Ghandler)

To calculate the change in a measuremd&tit)) due to the application of a small field
F (1) that gives a perturbation to the HamiltoniartH = — F(t) A.

The time dependence is given by the evolutiom®{r), p" (+) according to Hamilton’s
equations.
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Derivation
(e.g. see “Introduction to Modern Statistical Mechanics'Ghandler)

To calculate the change in a measuremd&tit)) due to the application of a small field
F (1) that gives a perturbation to the HamiltoniartH = — F(t) A.

The time dependence is given by the evolutiom®{r), p" (+) according to Hamilton’s
equations.

We can calculate averages in terms of the known distribugigm’, p') ats = 0:
B0y = [arap¥s (. p") B (V0.0 1))

wherer " (¢) is the phase space coordinate that evolves from the vl = 0.
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Back

Derivation
(e.g. see “Introduction to Modern Statistical Mechanics'Ghandler)

To calculate the change in a measuremd&tit)) due to the application of a small field
F (1) that gives a perturbation to the HamiltoniartH = — F(t) A.

The time dependence is given by the evolutiom®{r), p" (+) according to Hamilton’s
equations.

We can calculate averages in terms of the known distribugigm’, p') ats = 0:
B0y = [arap¥s (. p") B (V0.0 1))

wherer " (¢) is the phase space coordinate that evolves from the vl = 0.

We could equivalently follow the time evolution pfthrough Liouville’'s equation and
instead evaluate

(B(t)) = /drNdep (rN, pN,t) B (rN, pN)

but the first form is more convenient.
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Derivation (cont.)

Consider the special case of the step fafge) of magnitudeFy:
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Back

Derivation (cont.)
Consider the special case of the step fafge) of magnitudeFy:

Fort < 0 the distribution is the equilibrium one for tiperturbedHamiltonian
H(rV,p")=Ho+ AH
pI P = [ drNdpN e—F(HotAH)

so that
Tre—,B(Ho-FAH)B (rN, pN)

(B(0) = Tre—B(HotAH)

writing Tr = [drNdp™.
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Back

Derivation (cont.)
Consider the special case of the step fafge) of magnitudeFy:

Fort < 0 the distribution is the equilibrium one for tiperturbedHamiltonian
H(rV,p")=Ho+ AH

p(rV, pVy =
[ drNdpN e=B(Ho+AH)

so that
Tre—,B(Ho-FAH)B (rN, pN)

(B(0) = Tre—B(HotAH)

writing Tr = [drNdp™.

Fort > 0 we letr ¥ (z), p¥ (¢) for each member of the ensemble evolve under the
Hamiltonian, nowHp, from its valuer ¥, pV atr = 0, so that

Tr e  PHFAR B (1N (1), pV (1))
(B(t)) = Tr e—B(Ho+AH) '

Note that the integral is over', pV¥ =r" (0), p" (0), andAH = AH (r", p") etc.
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Derivation (cont.)

It is now a simple matter to expand the exponentials to first ordarah( Fo small!)

Tre PHo(1— BAH)B (rV (1), pY (1))
\B1)) = Tre—PHo(1— BAH)

to give
(B(t)) = (B)o — B[(AH B(t))o — (B)o (AH)o| + O (AH)?

where<>q denotes the average over the ensemble for an unperturbed system i.e. using
po = e PHO  Tyre=PHo,
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Back

Derivation (cont.)

It is now a simple matter to expand the exponentials to first ordarah( Fo small!)

Tre PHo(1— BAH)B (rV (1), pY (1))
Tre—PHo(1— BAH)

(B(1)) ~

to give
(B(t)) = (B)o — B[(AH B(t))o — (B)o (AH)o| + O (AH)?

where<>q denotes the average over the ensemble for an unperturbed system i.e. using
po = e PHO  Tyre=PHo,

Finally writing § B(t) = B(t) — (B) etc., and noticing that putting in the form afH
AH = —FoA(r™, pY) = —FpA (0)
gives for the change in the measuremantB(z)) = (B(t)) — (B)g

A(B(1)) = BFo (8A (0)8B(1))o
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Application to single cantilever

Assume observable is tip displacemant)

* Apply small step force of strengthy to tip
« Calculate or simulate deterministic decay/X (¢) for ¢t > 0. Then

AX(t)

Cxx (1) = (6X(1)6X(0))e = kpT 7
0

* Fourier transform o x x () gives power spectrum of fluctuations
Gx (w)
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Advantages

e Correct!

Essentially no approximations in formulation
o assumeA (X (1)) given by deterministic calculation

¢ also in implementation assume continuum description

Incorporates

o full elastic-fluid coupling

& non-white, spatially dependent noise

¢ no assumption on independence of mode fluctuations

© complex geometries

Single numerical calculation over decay time gives complete power spectrum

Can be modified for other measurement protocols by appropriate choice of
conjugate force

o AFM: deflection of light (angle near tip)

¢ BIONEMS: curvature near pivot (piezoresistivity)

Back Forward
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Single cantilever

Localized
stress

Localized
stress

DimensionsZ = 3u, W = 100nm,L1 = 0.6, b = 33nm
Material: p = 2230Kg/n?, E = 1.25 x 10" N/m?
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Device schematic
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Adjacent cantilevers

X, (t)
g by

30

X l—
Correlation of Brownian fluctuations

AX(1)

(6X2(1)6X1(0))e = kpT 7
1
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Device schematic

R e
- \

AN
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Results: single cantilever

3d Elastic-fluid code from CFD Research Corporation

| | | | | |
1.2E-24 |
4E-19 .
Correlation Power
Function Spectrum
TE, 3E-19 | il 8E-25 -
= =
X O
S 2E-19f 4
X
4E-25 |-
1E-19 | =
0 | | | ] ) ] ] | ] | 1 | ! 1
0 1E-06 2E-06 0 1E+06 2E+06 3E+06 4E+06

t(s) v

1us force sensitivity:K /G x(v) x IMHz ~ TpN
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Results: adjacent cantilevers

Autocorrelation of the noise for Cantilever 1
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Comparison with AFM experiments

x 10
1.2+
O.8k | “ "‘
rvl' .
0.4/ Mg
O L L
0 4000 8000

23241 x 20.11u x 0.573u Asylum Research AFM (Clarke et al., 2005)
Dashed line: calculations from fluctuation-dissipation approach

Dotted line: calculations from Sader (1998) approach
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Wall effects
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Conclusions

I've described one aspect of theoretically modelling micron and submicron scale
oscillators

 Linear fluctuations in solution [Paul and MCC, Phys. Rev. [92{.235501 (2004)]
Other areas of interest:

* Nonlinear collective effects of parametrically driven higharrays
[Lifshitz and MCC, Phys. ReB67, 134302 (2003)]

» Analysis of a QND scheme to measure the discrete levels in quantum harmonic
oscillator [Santamore, Doherty, and MCC, Phys. RBX0, 144301 (2004)]

« Synchronization due to nonlinear frequency pulling and reactive coupling
[MCC, Zumdieck, Lifshitz, and Rogers, Phys. Rev. L&8&, 224101 (2004)]

* Noise induced transitions between driven (nonequilibrium) states

» Single nonlinear oscillator
[cf. Aldridge and Cleland, Phys. Rev. Le®4, 156403 (2005) ]

» Collective states in arrays of oscillators

Back Forward



