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Outline

e Motivation: MEMS and NEMS
* BIONEMS: Fluctuations in the linear regime

« Pattern formation: Nonlinear and collective effects in parametrically
driven arrays
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Single crystal silicon [From Craighead, Scier®g®, 1532 (2000)]

Back Forward



Nanomechanical Oscillators: from Thermodynamics to Pattern Formatioht, October 2005

MicroElectroMechanical Systems and NEMS
Arrays of tiny mechanical oscillators:
o driven, dissipative= nonequilibrium

nonlinear

collective

noisy

(potentially) quantum
Goals

* Apply knowledge from statistical mechanics, nonlinear dynamics,
pattern formation etc. to technologically important questions

 |Investigate pattern formation and nonlinear dynamics in new regimes
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Part |I: Fluctuations of micro-cantilevers in solution
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BIoNEMS Prototype

w = 2.5, t=130nm

il

(Arlett et. al, Nobel Symposium 131, August 2005)
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Example Design Parameters

Localized
stress ;'

Localized
stress

Dimensions: L = 3u, w = 100nm,t = 30nm,L1 = 0.6, b = 33nm
Material: p = 2230Kg/n?, E = 1.25 x 10'"*N/m?

Results: Spring constanK = 8.7mN/m; vacuum frequencyy ~ 6MHz
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Atomic Force Microscopy (AFM)

S4700 150k 12 3 =300 SE(LN 1000

Commercial AFM cantilever (Olympus) DNA molecule in water
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Noise In micro-cantilevers
Thermal fluctuations (Brownian motion) important for:
 BIONEMS: detection scheme

 AFM: calibration

Goals:
« Correct formulation of fluctuations for analytic calculations

* Practical scheme for numerical calculations of realistic geometries
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Previous approach (Sader 1998)

 Model molecular collisions with cantilever as white noise force
uniformly distributed along cantilever

« Calculate modal responsg(w) for periodic driving forceF (w)
(resonance curves)

x Interesting frequency dependent mass loading and damping from
coupling to fluid

« Calculate fluctuation of tip displacement as sum of mode responses
for constant F (w) |2
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Problems

This approaches is formallyicorrectandhard to implementor realistic
geometries and strong damping:

* Noise force is not white
* Noise force is not uniformly distributed along surface
* Mode fluctuations are not in general independent

o Difficult to calculate coupled elastic-fluid modes, and many needed
for strong damping
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Fluid Dynamics Issues

ou
ot

- >
+u-Vu

V. 0

<
I

with v the kinematic viscosity/p.

Fluid dynamics is (relatively) easy if we can neglect the inertial terms.

For typical BIoONEMS/AFM:

e i - Vii = O(u?) is negligible because of tiny oscillation amplitudes

* Important parameter is the Strouhal number

2
ww
S = ~ 1.6
4y
w frequency Z x 1 MHz
w width (1
v kinematic viscosity 106 m2s—1

Low Reynolds number flow: linear ...but can't talse= 0
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Simple Picture (Sader)

Potential flow

00000
« AR

Diffusing / ..... Lt

vorticity
— S-l/z <«
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Back

Stokes Theory

Viscous force on sphere of radiusmoving with speed is

F/v = 6mpva

Viscous force per unit length of cylinder of radiuss given by
y =F/v=mpv xSImTI'(S)

with
4i K1(—i/iS)
ViSKo(—iv/iS)

Effective mass per unit length from fluid

r'S) =1+

Rel'(S)

_ 2 ~
M =ma“pRel'(S) = O ~ mTS)

(Other parametef =

x p w __ Mmass of cylinder of fluid__ 2)
4 ps t — mass of cantilever

14
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Q, y/Impv

For smallS: ST(S) — I
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New approach: fluctuation-dissipation theorem
(Paul and MCC, 2004)

Equilibrium fluctuations can be related to the decay of a prepared initial
condition

 (near equilibrium) thermodynamics: Onsager regression hypothesis

e statistical mechanics: fluctuation-dissipation theorem, linear response
theory, Kubo formalism ...(see eGhandle
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New approach: fluctuation-dissipation theorem
(Paul and MCC, 2004)

Equilibrium fluctuations can be related to the decay of a prepared initial
condition

 (near equilibrium) thermodynamics: Onsager regression hypothesis

e statistical mechanics: fluctuation-dissipation theorem, linear response
theory, Kubo formalism ...(see eGhandle

Consider Hamiltonian
H = Hy— F(t)A

Hp unperturbed Hamiltonian

A(r1...ry,p1...pNy) System observable
F(t) (small) time dependent force
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Back

H=H  +AH

u

equilibrium
nder H,+AH

p=p,(rN,p")

H

:HO
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Back

S o~

N_" :
A (B(1))

(6B()6A0))e = kpT
Fo
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Application to single cantilever

Assume observable is tip displacemant)

* Apply small step force of strengthy to tip
« Calculate or simulate deterministic decay/X (¢) for ¢t > 0. Then

AX(t)

Cxx (1) = (6X(1)6X(0))e = kpT 7
0

* Fourier transform o x x () gives power spectrum of fluctuations
Gx (w)
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Advantages

e Correct!

Essentially no approximations in formulation
o assumeA (X (1)) given by deterministic calculation

¢ also in implementation assume continuum description

Incorporates

o full elastic-fluid coupling

& non-white, spatially dependent noise

¢ no assumption on independence of mode fluctuations

© complex geometries

Single numerical calculation over decay time gives complete power spectrum

Can be modified for other measurement protocols by appropriate choice of
conjugate force

o AFM: deflection of light (angle near tip)

¢ BIONEMS: curvature near pivot (piezoresistivity)
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Single cantilever

Localized
stress

Localized
stress

DimensionsZ = 3u, W = 100nm,L1 = 0.6, b = 33nm
Material: p = 2230Kg/n?, E = 1.25 x 10" N/m?
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Adjacent cantilevers

X, (t)
g by

22

X l—
Correlation of Brownian fluctuations

AX(1)

(6X2(1)6X1(0))e = kpT 7
1
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Back

Results: single cantilever

3d Elastic-fluid code from CFD Research Corporation

| | | | | |
1.2E-24 |
4E-19 .
Correlation Power
Function Spectrum
TE, 3E-19 | il 8E-25 -
= =
X O
S 2E-19f 4
X
4E-25 |-
1E-19 | =
0 | | | ] ) ] ] | ] | 1 | ! 1
0 1E-06 2E-06 0 1E+06 2E+06 3E+06 4E+06

t(s) v

1us force sensitivity:K /G x(v) x IMHz ~ TpN
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Results: adjacent cantilevers

Autocorrelation of the noise for Cantilever 1
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< ) i F,  Stepforce |
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Comparison with AFM experiments

-11

x 10
1.2t
O.8k | “ "‘
rvl' .
0.4; o
O | |
0 4000 8000

23241 x 20.11u x 0.573u Asylum Research AFM (Clarke et al., 2005)
Dashed line: calculations from fluctuation-dissipation approach

Dotted line: calculations from Sader (1998) approach
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Part Il. Pattern formation in parametrically driven arrays

26
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Modelling high Q oscillators

0=x, +x,

Back
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Modelling high Q oscillators

0=x, +x,
+ yx, linear damping
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Modelling high Q oscillators

0=x, +x,
+ ¥ Xn
~+ 8, x, with §,, taken from distributiory (5,,)
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Modelling high Q oscillators

0=x, +x,
+ Y Xn
+ OnXp

+ Z Dy (xm — x,)  reactive coupling
m
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Modelling high Q oscillators

0=x, +x,
+ ¥ Xn
+ OnXp
+ Z Dy (X — xp)
m

+x; nonlinear stiffening
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Modelling high Q oscillators

0=x, +x,
+ ¥ Xn
+ dnxn
+ Z Dy (X — xp)
m

3
+ X,

+n [ (X1 — X0)2(Gongd — %) — (Xn — Xp—1)? (K — Xn—1)] nonlinear damping
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Modelling high Q oscillators
0=x, +x,
+ ¥ Xn
+ 8,,x,,
+ Z Dy (X — xp)

+ x,‘:’
2/ . 2. . .
1 [(xn—l—l — X)) (Xpt1 — X)) — (0 — Xp—1) "Xy — xn—l)]

— gpXn(1—x2) energy input
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Modelling high Q oscillators

0=x, +x,
+ ¥ Xn
+ dnxn
+ Z Dy (X — xp)
m

3
+ X,

1) [(xn—l—l — xn)z(jcn—l—l — Xp) — (Xp — xn—l)z(xn - xn—l)]

+gp COS[(2+ Swp)t] x, parametric drive
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Modelling high Q oscillators

0=x, +x,
+ ¥ Xn
+ OnXp
+ Z Dy (X — xp)
m

3
+ X,

1) [(xn—l—l — xn)z(jcn—l—l — Xp) — (Xp — xn—l)z(xn - xn—l)]

+gp COS[(2+ Swp)t] Xy
+ 2gpCos[(1+ dwp)t] signal

Back

27

Forward



Nanomechanical Oscillators: from Thermodynamics to Pattern Formatioht, October 2005

Modelling high Q oscillators
0=x, +x,
+ ¥ Xn
+ 8,,x,,
+ Z Dpm(Xm — xn)
m
—I—x,:f

1) [(xn—l—l — xn)z(jcn—l—l — Xp) — (Xp — xn—l)z(xn - xn—l)]

+gp COS[(2+ Swp)t] Xy
+ 2gpcos[(1+ dwp)t]
+ Noise
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Modelling high Q oscillators
0=x, +x,
+ ¥ Xn
+ 8,,x,,
+ Z Dpm(Xm — xn)
m
—I—x,f’

1) [(xn—l—l — xn)z(jcn—l—l — Xp) — (Xp — xn—l)z(xn - xn—l)]

+gp COS[(2+ Swp)t] Xy
+ 2gpcos[(1+ dwp)t]
+ Noise
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Theoretical approach

Oscillators at frequency unity + small corrections

Assume dispersion, coupling, damping, driving, noise, and nonlinear
terms are small.

Introduce small parameterwith ¢” characterizing the size of these
various terms.

Then with the “slow” time scal@& = ¢t

xp(t) = 81/2 [An(T)eit + c.c.] + 83/2xlfll) )+ ---

derive equations fafA,,/dT = - --.
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Example: single Duffing oscillator

X+ yx+x —|—x3 = 22p COSwpt)
Parameters:
y  damping
¢p drive strength

wp drive frequency

Spring getsstiffer with increasing displacement.

Back
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Back

We can calculate behavior close to the sinusoidal oscillati@ :
 oscillator driving near resonanag, >~ 1
e small damping

« small drivinggp of oscillation implies the effect of the nonlinearity
will be small
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Back

We can calculate behavior close to the sinusoidal oscillati@ :
 oscillator driving near resonanag, >~ 1

e small damping

« small drivinggp of oscillation implies the effect of the nonlinearity
will be small

To implement these “smallnesses” write

wp =14 ¢Qp
gp = £”/°g
y = ¢l

with ¢ <« 1 andg, I', 2p considered to be of order unity.

(For these scalings the different effects that perturb the oscillator away
from e*’ are comparable. If there is a different scaling of the small
parameters, one or more effects may not be important in the dynamics.)
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Introduce the WKB-likeansatzfor the displacement

x(t) =2 A(T) e +cc. 4 &3 % xq1(t) + - --

* A(T) is acomplexamplitude that gives the slow modulation

e T = ¢t IS aslowtime variable:

) A(T) <« 1
I = &
dt

e x1(7) and- - - give corrections to the ansatz that are required to be small
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Introduce the WKB-likeansatzfor the displacement
x(t) = Y2 A(T) " +cc +e¥%x1(t) + - --

* A(T) is acomplexamplitude that gives the slow modulation

T = et Is aslowtime variable:
d A=e¢A(T) <« 1
N — &
dt
e x1(¢) and- - - give corrections to the ansatz that are required to be small
Substitute into the equation of motion using

x=e2(A+eANe +cc 4+ e¥% 4 -
X =eV2(—A+2icA + e°A")e" +c.c.+ &% + - -
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Introduce the WKB-likeansatzfor the displacement
x(t) = Y2 A(T) " +cc +e¥%x1(t) + - --

* A(T) is acomplexamplitude that gives the slow modulation

« T = ¢t Is aslowtime variable:
d A=e¢A(T) <« 1
N — &
dt
e x1(¢) and- - - give corrections to the ansatz that are required to be small
Substitute into the equation of motion using
i=e2(A+eAe +ce 4+ 3%+
¥ = Y2 (A +2icA +°A")e" +cc + %K+ - -
and collect terms to give & (¢3/?)

X14x1=(—2A —iTA—3|AIPA+ g1l — A3 L ce. + -
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Back

For x1 to be small, theesonandriving terms on the right hand side must
be zero.

This gives

d r 3 g
—A:__A _AZA__ ZQDT
dT A tiglAlA e
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For x1 to be small, theesonandriving terms on the right hand side must
be zero.

This gives

d r 3 g
—A:__A _AZA__ ZQDT
dT A tiglAlA e

After transients the solution i8 = aei*2T with

(g/2)?
(Qp — 3 1al®)2 + (I'/2)?

2
a]” =

or

2 (§p/2)
[op — (L+ 3 1xD)]* + (v/2)2
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Nonlinearity: Frequency pulling

A small large

driving driving

Amplitude x/g,

Frequency w,
X+ yx+x —|—x3 = gpCoOSwpt)

Back
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Experiment

Platinum Wire [Husain et al., Appl. Phys. Le83, 1240 (2003)]
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Results
10 1 1 1
10
530 pV drive
S
81 = l -
~5
=
o
3 o> -
- 10 - “===-|1 N / |nccr"e§s|n9
= 053 Frequency (MHz) 105. /' rve
~ 4 ;
2
0
105.05 105.10 105.15 105.20 105.25
Frequency (MHz)
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Parametric drive in MEMS

¥4+ yx+ L+ gpcoswp)x +x°=0

oscillation ofparameterof equation—here the spring constant

x = 0 remains a solution in the absence of noise

parametric drive decreases effective dissipation (for one quadrature of
oscillations)

» amplificationfor small drive amplitudes

» Instability for large enough drive amplitudes

strongest response far, = 2
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MEMS Elastic parametric drive

[Harrington and Roukes]

Back

37

Forward



Nanomechanical Oscillators: from Thermodynamics to Pattern Formatioht, October 2005 38

Amplification

1 b 1 " 1
14 I [ ] -
+ 5mV pump
12 | = 8.2mV pump i
Q = 505000 without pump, Q = 10600
= 10 |- -
3
O 8 o
)
cC
8
il Ul
L
4 - 4
o | Q = 20400 |
) 1 1 1 1 1 L i
17.717 17.718 17.719 17.720 17.721
frequency (MHz)

[Harrington and Roukes]
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Parametric instability in arrays of oscillators

N
N\

X
\

NN

270u x 1u x 0.25u gold beams [Buks and Roukes, 2001]
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Simple intuition

Frequency w

'kP P ma
Wave vector k

Above the parametric instability nonlinearity is essential to understand the
oscillations.

 Mode Competition

e Pattern formation
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Experimental results

18
16
14
12

10

DC Bias Voltage, V,. (V)

174 175 176 177 178 179

Frequency, f (KHz)
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One beam theory

Fixed g,

(ol
(@2 = |nclude nonlinear damping
8 %
S <
= 2
= =
£ <
S L
(D) (=
= -
0 o

amplification
2 2
Drive frequency w, Drive frequency wy,
dA h . .
2~ EA*elQT LiyA+3|ARA +in|APA=0, A(T)= ac'?!
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Many beam theory

O:)'én—l—xn—l—x,f’

+ A%(1 4 gp coS[(2 + e)1]) (a1 — 20 + Xn-1)
— ¥y (Xpy1 — 2%, + Xp-1)
+ 1 [t = 20) 2 Chnt — %n) — (o — X0 1)2 (o — 1)
Local Duffing (elasticity) + Electrostatic Coupling (dc and modulated) +

Dissipation (currents) + Nonlinear Damping (also currents)

[Lifshitz and MCC Phys. Rev. B67, 134302 (2003)]
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2 beam periodic solutions

stable
unstable

15

Intensity of symmetric modgx, | and antisymmetric mode,, | as

frequency is scanned.
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Back

2 beam periodic solutions

stable
unstable

15

15 -5
Q

The green lines correspond to a single excited mode, the remainder to
coupled modes.
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Hysteresis for two beams

5 [ T T T T T T T T T T T T T T T T T T T T lool
41 ‘
% : Slo°°
c 37 o ]
@) |
% |
L2+ 1
o |
1t 1
-10 15
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Simulations of 67 Beams

3
é e——e Sweep up
9 _ o---o Sweep down
ASRC A
><C L
\Y;
b
()]
<D .
S 3¢t
N .
(b]
e
0 | N

1.94 1.96 1.98 2.00 2.02
Drive Frequency cop/wo

Back Forward



Nanomechanical Oscillators: from Thermodynamics to Pattern Formatioht, October 2005

Many beams

Single oscillator
Vary pump frequency

Many oscillators
Fixed pump frequency

/
/
/

o [a N
=2 o patterns /
3 o /’
= 2 /
= o /
& /
= S /
/
2 2 ,
a L &)
amplification uniform state stable
5 0(K)=00,/2
Drive frequency w, Wavevector k

Continuum approximation: new amplitude equation
[Bromberg, MCC and Lifshitz (preprint, 2005)]

A 92A 2 dA JA*
— A4+ — +i=[4]|A1°— 4+ A2Z—— ) —2|A?
+ +1i ( |A| oy ax) |A|

aT X2 3
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Conclusions

I've described two aspects of theoretically modelling micron and submicron scale
oscillators

 Linear fluctuations in solution [Paul and MCC, Phys. Rev. [92{.235501 (2004)]

* Nonlinear collective effects of parametrically driven higharrays
[Lifshitz and MCC, Phys. ReB67, 134302 (2003)]

Other areas of interest:

« Synchronization due to nonlinear frequency pulling and reactive coupling
[MCC, Zumdieck, Lifshitz, and Rogers, Phys. Rev. L&R, 224101 (2004)]

* Noise induced transitions between driven (nonequilibrium) states

» Single nonlinear oscillator
[cf. Aldridge and Cleland, Phys. Rev. Le®4, 156403 (2005) ]

» Collective states in arrays of oscillators

* Analysis of a QND scheme to measure the discrete levels in guantum harmonic
oscillator [Santamore, Doherty, and MCC, Phys. R0, 144301 (2004)]
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