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Rayleigh-Bénard Convection
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Rayleigh-Bénard Convection
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Convection Patterns

From the website of Eberhard Bodenschatz
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Equations for Convection

Momentum Conservation

1

σ

[
∂ Eu
∂t

+
(
Eu • E∇

)
Eu
]

= −E∇ p + R Têz + ∇2Eu + 2Äêz × Eu

Energy Conservation

∂T

∂t
+

(
Eu • E∇

)
T = ∇2T

Mass Conservation
E∇ • Eu = 0

BC: no-slip boundaries atz = 0, 1 with T(z = 0) = 1, andT(z = 1) = 0

Aspect Ratio:0 = r/d
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Modern Convection Apparatus

From de Bruyn et al., Rev. Sci. Instr. (1996)
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Modern Convection Apparatus

From de Bruyn et al., Rev. Sci. Instr. (1996)

Allows aquantitativecomparison between theory and experiment.
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What Is It?

Definitions
dynamics, disordered in time and space, of a large, uniform system
collective motion of many chaotic elements
breakdown of pattern to dynamics

Natural examples:
atmosphere and ocean (weather, climate etc.)
arrays of nanomechanical oscillators
heart fibrillation

Cultured monolayers of cardiac tissue (from Gil Bub, McGill)
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Spatiotemporal Chaos

A new paradigm of unpredictable dynamics

Simplifications over small-system chaos

Perhaps smooth dependence on parameters
Statistical rather than geometrical description
N → ∞ limit

Not as difficult as fully developed turbulence!
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Spiral Chaos in Rayleigh-Bénard Convection

…and from experiment

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 20 / 54



Domain Chaos in Rayleigh-Bénard Convection
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Spiral and Domain Chaos in Rayleigh-Bénard Convection
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Summary of Results

Amplitude equation theory predicts

Length scale ξ ∼ ε−1/2

Time scale τ ∼ ε−1

Velocity scale v ∼ ε1/2

with ε = (R − Rc(Ä))/Rc(Ä)

Numerical Tests

generalized Swift-Hohenberg equationsX
full fluid dynamic simulationsX

Experiment× (but now we understand why)
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Amplitudes

Rayleigh's linear stability analysis gives

u = u0eγ t cos(qx) . . . = A(t) cos(qx) . . .

so that in the linear approximation and forR nearRc

d A

dt
= γ A with γ ∝ ε = R − Rc

Rc
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Amplitudes

Rayleigh's linear stability analysis gives

u = u0eγ t cos(qx) . . . = A(t) cos(qx) . . .

so that in the linear approximation and forR nearRc

d A

dt
= γ A with γ ∝ ε = R − Rc

Rc

Useε as small parameter in expansion about threshold

Nonlinear saturation
d A

dt
= (ε − A2)A

Spatial variation
∂ A

∂t
= εA − A3 + ∂2A

∂x2

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 27 / 54



Amplitude Equations for KL Instability
(Busse-Heikes, May-Leonard)

A1 A2 A3

KLKL

KL

d A1/dt = εA1 − A1(A2
1 + g+ A2

2 + g− A2
3)

d A2/dt = εA2 − A2(A2
2 + g+ A2

3 + g− A2
1)

d A3/dt = εA3 − A3(A2
3 + g+ A2

1 + g− A2
2)

give aheteroclinic cycle
A1

A2

A3
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Three Amplitudes + Rotation + Spatial Variation
(Tu and MCC, 1992)

A1 A2 A3

KLKL

KL

∂ A1/∂t = εA1 − A1(A2
1 + g+ A2

2 + g− A2
3) + ∂2A1/∂x2

1

∂ A2/∂t = εA2 − A2(A2
2 + g+ A2

3 + g− A2
1) + ∂2A2/∂x2

2

∂ A3/∂t = εA3 − A3(A2
3 + g+ A2

1 + g− A2
2) + ∂2A3/∂x2

3

gives chaos!
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Simulations of Amplitude Equations
(Tu and MCC, 1992)

Grey: A1 largest; White:A2 largest; Black:A3 largest
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Scaling

RescaleX = ε1/2x, T = εt, Ā = ε−1/2A

∂T Ā1 = Ā1 − Ā1(Ā2
1 + g+ Ā2

2 + g− Ā2
3) + ∂2

X1
Ā1

∂T Ā2 = Ā2 − Ā2(Ā2
2 + g+ Ā2

3 + g− Ā2
1) + ∂2

X2
Ā2

∂T Ā3 = Ā3 − Ā3(Ā2
3 + g+ Ā2

1 + g− Ā2
2) + ∂2

X3
Ā3

Numerical simulations show chaotic dynamics withO(1) length and time scales
Therefore in unscaled (physical) units

Length scale ξ ∼ ε−1/2

Time scale τ ∼ ε−1

Velocity scale v ∼ ε1/2
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Issues

Important Issues

Validity of scaling results from truncated expansions

Validity of “mean field” results in nonlinear fluctuating state

Other Approximations

Restriction to 3 roll orientations

Amplitudes assumed real

No wave number variation
No dislocations or phase grain boundaries

No perpendicular derivative terms

(
∂xi − i

2qc
∂2

yi

)2

−→ ∂2
xi
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Tests of the Theory

Simulations of generalized Swift-Hohenberg equations in periodic
geometries show results consistent with predictions
[MCC, Meiron, and Tu (1994)]

Experiments give results that are consistent either with finite values ofξ, τ

at onset, or much smaller power lawsξ ∼ ε−0.2, τ ∼ ε−0.6

[Hu et al. (1995) + many others]

Simulations of generalized Swift-Hohenberg equations in circular
geometries of radius0 gave results similar to experiment but also
consistent with finite size scaling

ξM = ξ f (0/ξ) with ξ ∼ ε−1/2

[MCC, Louie, and Meiron (2001)]

Fluid simulations …
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Generalized Swift-Hohenberg Simulations
MCC, Meiron, and Tu (1994)

Real field of two spatial dimensionsψ(x, y; t)

∂ψ

∂t
= εψ + (∇2 + 1)2ψ − ψ3 gives stripes
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Generalized Swift-Hohenberg Simulations
MCC, Meiron, and Tu (1994)

Real field of two spatial dimensionsψ(x, y; t)

∂ψ

∂t
= εψ + (∇2 + 1)2ψ − ψ3

+ g2ẑ·∇ × [(∇ψ)2∇ψ ] + g3∇·[(∇ψ)2∇ψ ]

gives domain chaos!

Stripes Orientations Domain Walls
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Scaling of Correlation Length
MCC, Meiron, and Tu (1994)

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 36 / 54



Outline

1 Rayleigh-Bénard Convection

2 Spatiotemporal Chaos
What is it?
Spatiotemporal Chaos in Rayleigh-Bénard convection

3 Domain Chaos
Amplitude equation theory
Generalized Swift-Hohenberg simulations
Experiment
Simulations of full fluid equations

4 Conclusions

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 37 / 54



Experiment and Diagnosis
Hu et al. (1995)
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Experimental Results for Correlation Length
Hu et al. (1995)
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Spectral Element Numerical Solution
MCC, Greenside, Fischer et al.

Accurate simulation of long-time dynamics

Exponential convergence in space, third order in time

Efficient parallel algorithm, unstructured mesh

Arbitrary geometries, realistic boundary conditions

Conducting

ÿþýüû

Insulating

dT/dx=0

"Fin" Ramp
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Simulations Complement Experiments

Knowledge of full flow field and other diagnostics (e.g. total heat flow)

No experimental/measurement noise (roundoff “noise” very small)

Measure quantities inaccessible to experiment e.g. Lyapunov exponents
and vectors

Readily tune parameters

Turn on and off particular features of the physics (e.g. centrifugal effects,
realistic v. periodic boundary conditions)
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Full Fluid Dynamic Simulations
Scheel, Caltech thesis (2006)

Realistic Boundaries

Periodic Boundaries
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Lyapunov Exponent
Jayaraman et al. (2005)

Temperature Temperature Perturbation
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Lyapunov Exponent
(Jayaraman et al., 2005)

Aspect ratio0 = 40, Prandtl numberσ = 0.93, rotation rateÄ = 40
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Full Fluid Simulations for Domain Chaos

Summary of results of full 3d fluid simulations:

Simulations of Rayleigh-Bénard convection with Coriolis forces give
τ ∼ ε−1 for small enoughε. For largerε a slower growth is seen perhaps
consistent withτ ∼ ε−0.7

[Scheel and MCC (2005)]

Scaling of largest Lyapunov exponent consistent withλ ∼ c + ε1 with c
comparable to the finite size shift in onset
[Jayaraman et al. (2006)]

Role of centrifugal force
[Becker, Scheel, MCC, and Ahlers (2006)]
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Frequency Scaling
Scheel and MCC (2005)

Slopes give frequency∝ ε1.07 (0 = 40 cylinder) andε1.04 (periodic)

Michael Cross (Caltech, BNU) Spatiotemporal Chaos June 2006 47 / 54



Scaling of Lyapunov Exponent
Jayaraman et al. (2005)
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Importance of Centrifugal Force
Becker, Scheel, MCC, and Ahlers (2006)

Aspect ratio0 = 20,ε ' 1.05,Ä = 17.6

Centrifugal force 0 Centrifugal force x4 Centrifugal force x10
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Time Scaling
Becker, Scheel, MCC, and Ahlers (2006)

o simulations0 = 20 with centrifugal force×2; ¤ experiment0 = 40
¦ simulations0 = 40 no centrifugal force
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Current Picture

Simulations of the full fluid equations near onset without centrifugal forces
are consistent with predictions of scaling of times asε−1; not yet able to
probe scaling of lengths.

Centrifugal forces are important in experiment, enhancing the finite size
effects and limiting size of region of domain chaos.

Maximum centrifugal force cf. Coriolis force∼ (α1T)Ä0/u.
(Near thresholdÄK L ∼ 101, u ∼ ε1/2).
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Conclusions

Spatiotemporal chaos is a third paradigm of complex dynamics (cf. chaos,
turbulence)

Rotating convection shows spatiotemporal chaos in the weakly nonlinear
regime near onset where there is hope for a quantitative understanding.

Numerical simulations of realistic experimental geometries are now
feasible
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Conclusions

Spatiotemporal chaos is a third paradigm of complex dynamics (cf. chaos,
turbulence)

Rotating convection shows spatiotemporal chaos in the weakly nonlinear
regime near onset where there is hope for a quantitative understanding.

Numerical simulations of realistic experimental geometries are now
feasible

Truncated amplitude equation model makes predictions for scaling of
lengths∝ ε−1/2 and times∝ ε−1

Scalings and features of dynamics predicted by truncated amplitude model
confirmed by GSH simulations and full fluid simulations

Disagreement between experiment and predictions resolved (finite size,
centrifugal effects)
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To Do

More precise experimental tests of the (homogeneous) theory

Understand theoretically how good the truncated amplitude equation model
should be

Relate to lattice systems of coupled heteroclinic oscillators

Understand the origins of chaos in the system and models
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More precise experimental tests of the (homogeneous) theory

Understand theoretically how good the truncated amplitude equation model
should be

Relate to lattice systems of coupled heteroclinic oscillators

Understand the origins of chaos in the system and models

THE END
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