Physics 127c: Statistical Mechanics

Fermi Liquid Theory: Principles

Landau developed the idea of quasiparticle excitations in the context of interacting Fermi systems. His
theory is known as-ermi liquid theory He introduced the idea phenomenologically, and later Abrikosov
and Kalatnikov gave a formal derivation using diagrammatic perturbation theory to all orders.

Landau suggested describing the excited states of the interacting system as in one-to-one correspondence
with the excited states of the noninteracting system, through “switching on” the pair interactions. The
interactions conserve the total particle number, spin, and momentum. Starting with a noninteracting system
with one particle added in stape o to the ground state Fermi sea, and switching on the interactions, so that
the particle becomes “dressed” by its interaction with the other particles, gives a state with characteristics
of a particle in an excited state with definite momentpnspin states, and adding one to the particle
count. The energy of course is not preserved because the Hamiltonian is changed. In addition the state
given by this switch-on process will eventually decay into a collection of more complicated states (e.g. by
exciting particle-hole pairs out of the Fermi sea) so that there is a finite lifetime. Thus the process gives a
state with simple quantum numbeérso, N, and counting, because of the one-to-one correspondence with the
noninteracting system, but itis not a true eigenstate of the interacting Hamiltonian. Itis agliesiparticle
or quasi-excitation

In the noninteracting system particles can only be addeg for pr, and so this gives quasiparticle
excitation withp > pr. (Rememberpr is not changed by interactions.) Fpr< p, no particles can be
added to the noninteracting system, but a particle can be removegfrono form an excited state (of the
N — 1 particle system). Switching on the interaction now gives a quasihole state with momeptunw .

We can account for both types of excitations in terms of a change in occupation ninpbeavhich is+1 for
the added particle/quasiparticle for> pr, and—1 for the removed particle or hole/quasihole fok pg.
In this notation we are using the filled Fermi sea as a reference for the quasiparticles.

The idea of switching on the interaction to define the quasi-excitations only makes sense if an appropriate
switching rater; ! can be found. This has to be slow enough that perturbations in the enehgy, are
small compared to the energy scale of interest. This is of Q8l&m —er ~ vp(p — pr) With vy ~ pp/m
the Fermi velocity. On the other hangdmust be shorter than the lifetime of the quasiparticle, otherwise it
will decay away during its birth. The lowest order decay process is scattering a particle out of the Fermi
sea. Applying the Fermi Golden rule shows that the decay rate of a quasiparticle of monpentlinvary
proportionate ta@p — pr)? for p nearpy, since by energy conservation and the Pauli exclusion principle the
two particles must scatter into a narrow band of states of width alpodtp ) near the Fermi surface. Thus
the quasiparticle is well defined only fpr— pr—typically we might guess folp — pr| < pr, although
the estimate must also depend on the strength of the interactions.

For a small number of quasiexcitations the energy relative to the ground state is given by superposition

E—Eo=Y ,8np, + 0(n?) (1)
p,o

wheree, = 8E/dnp, is the single quasiparticle energy, which will depend just pinfor a rotationally
invariant spin }2 system. In generak, # p?/2m.

1l ifshitz and Pitaevskii give an argument for why there are no “spin-orbit interaction” terms for spin-1/2 particles. They also
say that even if the bare Fermions are higher spin, the quasiparticles have spin 1/2.



Propagator Approach

Landau was brilliant enough to correctly construct the picture introduced above, but there are certainly some
mysteries left for the rest of us. A more pedestrian approach is to try to add a particleimbetfaeting

ground state, and “see what happens”. This is captured by the propagator or Green function introduced in
Lecture 2 which in Fourier representation is
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(This is known as théme ordered producof operators.) | us@/s) as the notation for the ground state of
theinteractingsystem, and will uséyo) for the ground state of the noninteracting system.
The time dependence of the operators is the Heisenberg dependence with the full Hamiltonian

ako (1) = "M e~ M (3)

with ay, the Schrodinger version of the operator. Thustfer’ we can writeG as
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which tells us about the evolution for the time- ¢’ of the states,, |1//G(t/)) (the state given by adding a
particle tok, o at timet’), and in particular what is the overlap with the state |y (1)) after this time. For
t < t' we learn about the propagationaf, | (1)), the state with a particle removed.

Noninteracting System

Let’s first look at the noninteracting system, defined by the Hamiltonian

Ho = Z Eka;iaak,g. (5)
k,o

with e, = #%k?/2m. The Heisenberg equation of motion

. dak,a

ih=" = [ax.q. Hol (6)
gives

ak o (1) = axge” ", (7a)

Gl (1) = af ¢4, (7b)

so that the noninteracting propagator is
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with fi = f (&) the Fermi step functionfy = 1 forg; < ef).



Now introduce the frequency-Fourier transform

Gk, w) = /oo Gk, t)e'", (10a)
Gk, 1) = foo d—wG(k,w)e—fM. (10b)
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Imagine performing the inverse transfoiiik, ) — G(Kk, ) by contour integration. The integration is
along the real axis. Far > 0 we can close the contour & in the lower half plane, since“* — 0 here.
The integral is given in terms of the residues of the poles in the lower half plane. Similary<£o® the
integral is given in terms of the residues of the poles in the upper half plane. The expressiéhi&thd

inverse of 1

w — Sk/h + iT}k ’
with n, a positive infinitesimal fok > kr and a negative infinitesimal far < k. Thus the energy to add a

particle is given by a pole iGy(k, w) slightly displaced from the real axis. The exact Fourier inverse gives
a time dependence

Gokk,w) = (11)
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Then sety, — 0.

Interacting System

Now return to the interacting system. We cannot expect to calculate a closed-form expression in general.
Insight is gained from thepectral representationThis is generated by inserting a complete seéxdct

energy eigenstatés,, |v,,) (.| = 1 between the creation and annihilation operators in Bq.Rort > ¢’

these are the eigenstates for thiet+ 1 particle systenjy, (¥ ) with energiese (N 9; for r < ¢ they are

the stategy, V=) with energiesE (V=Y. Since momentum is a good quantum number, these states all have
momentumik. Now use
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with ¢ ¥ +D themth excitation energy of th&/ + 1 particle system (necessarily positive), anthe chemical
potential. Equationd) is
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The structure of the Fourier representatiGik, w) is shown in Fig.1. There are poles at the exact
excitation energies
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Complex w
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Figure 1: Analytic structure of full propagator(k, w) in the complexv plane. The X denote poles.
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Analytic continuation
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Figure 2: Analytic continuation in inverse Fourier transform.

with n a positive infinitesimal.
How does a quasiparticle appear in this picture? Let's focus on the added particle sage. In
analogy with Eq. {2) we might expect

G(K, 1) o e/ gnt (18)

with y,jl a finite lifetime. This would give a pole i (k, w) for @ > u and in the lower half plane, which
is inconsistent with the general expression. To resolve this we must look at the contour integration more
carefully, Fig.2.

Consider ther > 0 case when the contour for i — —oo gives zero. First we must recognize that
the lifetime of the quasiparticle represented by the exponential decay of the propagator can only occur in the
infinite system limit; if any finite system is “hit”, as in particle addition, it will “ring” at the exact eigenstate
frequencies. Itis only in the infinite size limit that there is no recurrence, and the incoherence of the infinity
of frequencies yields exponential decay. In the infinite size limit the poles become dense, andhfantiha
cut that cuts the complex plane into two.



Split the integral along the real axis in the Fourier inverse into two pieces

/::foo+/°° (19)

The first integral can be safely evaluated by displacing the contoss fo the lower half plane without
encountering poles, and so reduces to just the contribution from the vertical portiop froimo to . We

cannot do this for the second integral, since the real axis is cut off from the lower half plane by the branch
cut. Instead we must define the analytic continuatio g€, ») from the real axis onto a second Riemann
sheet in the lower half plan@he quasiparticle appears as a pole in the analytic continuatio6 &, w). A

pole atey — iy will give atime dependence as in EG8]. It can be shown that fax sufficiently small, the
contributions from the vertical portions of the contours in Rigive corrections to this leading order result.

Similarly the hole excitations are given by poles in the analytic continuation from the reab axig
into theupperhalf plane, and contribute 6 (k, t) for t < 0.

If px is small, the value o€ (k, w) in the vicinity of realw >~ ¢ will become large, and this region will
dominate the integral giving; (k, r). This corresponds to a clustering of exact eigenstates and/or a large
values of their weight$(a|j’0)m,c %in this region. The quasiparticle picture captures all of this in terms of
the single pole.

Further Reading

Statistical Mechanics, part @f the Landau and LifshitZ heoretical Physics series (this volume is actually
by Lifshitz and PitaevsKjigives a nice, if typically terse, account: 81 discusses the phenomenological
approach. A full discussion of the diagrammatic derivation (which certainly goes beyond the level of the
present course) is only found in advanced Russian textbooks: the most farmetlégls of Quantum Field
Theory in Statistical Physidsy Abrikosov, Gorkov, and DzyaloshinskKiit is also discussed in 814-20 of
Lifshitz and PitaevskiiFor some reason, the standard American books on these methods (e.g. the ones by
Fetter and Waleckar by Mahar) do not include the topic, to my mind one of the great triumphs of this
formal approach.
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