Physics 127c: Statistical Mechanics

Weakly Interacting Fermi Gas

Unlike the Boson case, there is usually quualitativechange in behavior going from the noninteracting to
the weakly interacting Fermi gas faepulsiveinteractions. For example the excitation spectrumafialing
a particle of momenturhk with |k| > kr or for removinga particle with|k| < &k creating a “hole” has the
same qualitative form

ex — p = hvp |k — kp| (1)

with @ the chemical potential or Fermi energy ahgd the Fermi wave vector (which can be shown to
unchangedy the interactions—Luttinger’s theorem). Hergis called the Fermi velocity
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and defines the spectrum. Tiielueof vy is altered by interactions. The familiar spectrum leads to the
usual temperature dependences at low temperature, e.g. specific bed@t susceptibilityy independent
of temperature.
Furthermore, since there is no qualitative change of behavior, unlike for the Boson case (where the
canonical transformation was necessary) quantitative results can be calculated using perturbation theory.
When are the interactions weak? For a short range pair interaction potential this is small potential or low
density. On the other hand for a Coulomb interaction, as for the electron gas, interactions are weak compared
with the kinetic terms ahigh density

The Electron Gas

We write the interaction potential as
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wheree is the electron charge in CGS units, arfd= ¢2/4m ¢ With g, the electron charge in Sl units.
An estimate of the interaction energy per patrticle is
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with ro a measure of the interelectron spacing given by
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i.e. a sphere of radiug contains on average one electron.
Sincekr is related taV by the usual counting of states
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we have
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It is conventional to writey in terms of the Bohr radiugy = #2/me?
ro = rsao (8)

andr, the interelectron spacing in units@f is the dimensionless measure of the density of the electron gas.
The estimate of the potential energy becomes
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The total kinetic energy is
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Thus the potential energy is relatively small for smglli.e. large density. For typical metals2r, < 6
(e.g. for sodiumr,; >~ 4) and so the interactions are not weak.

Perturbation Theory
Potential Energy

The ground state energy correction to lowest order in the interactions is given by the expectation value of the
potential energy in th@oninteractingground state. In conventional wavefunction notation we would just
write the wavefunction as an antisymmetrized product (Slater determinant) of single particle wavefunctions
(functions of coordinate and spin)
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with A4 the antisymmetrization operator (giving the Slater determinant form).

In chemistry, where we are dealing with electrons in an external potential as in the trapped Bose gases, the
best single particle statgs would be found self consistently by minimizing the resulting energy expression.

In a homogeneous fermion gas theremain spin up or down plane wave states, and the wavefunction
reduces to the noninteracting one. Thus
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In the noninteracting ground state the four particle expectation value factorizes into the product of the nonzero
pairwise averages, and as you provetiomework 1
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= Nk 6Nk’ ,0'8q,0 — Nk+q,0k,0 Ok’ k+qSs0’ (13b)
where the minus sign for the second term comes because we have changed the order of the middle pair

of Fermi operators (remember tlamticommutation rules!), andy , is the noninteracting ground state
occupation number

nka—{ 1 fork <kp (14)
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This gives
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The first term in Eq.15) can be written a%szZ(O)/ Q and is just the mean potential interaction between
all the particles. In this context it is known as the Hartree term. You might have expected this to be the
complete result since we are just using the noninteracting wavefunction, and indeed this would be the case
for distinguishable particles. The second term arises from the antisymmetrization of the wavefunction, and
is known as the exchange or Foch term. Together we Havgee-Fochtheory.

Radial Distribution Function

The Foch term can be understood better by remembering the result for the potential energy from our study
of the classical interacting gas. For a pairwise interaction the potential energy just depends on the pair
correlation function, conveniently expressed in terms of the radial distribution furngion

1 N2

V) = d® LVE s~ 16
( )—55 u(r)g(r) r—é@ - u(@)g(—aq). (16)

The radial distribution functiog(r) is proportional to the probability of finding a particle magiven that
there is one at the origin. Itis normalized so that — oo) = 1. Also, remember the convention for Fourier
transforms | am using
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q

=g [ roes (19)

where at the end of the calculation we evaluate the wavevector sum as
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Comparing with Eqg. () we can introduce the spin dependent radial distribution fugtioand write
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with
8oo'(Q) = (N/2)2 <Zk al:r’+q,g/ak’,a’ak,a> , (21)
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or Fourier transforming
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Using the same factorization procedure gives (writing the last term in terlngkotather thark, q)
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This can be written in terms of the real functigiR)

2 ik-R
P(R) = ;e Mo (24)
as
oo’ = 1= 850 $*(R). (25)
The functiong is easily evaluated, sinaeg, is 1 fork < kr and O fork > kr as
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(writing the density: in terms ofk and introducingy = kgr), or

¢(R) = [sin(kpr) — (kpr) coskrpr)]. (28)
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Figure 1: Radial distribution function for parallel spin fermions plotted from E2f9). &nd @9).

These results show thgt, = g | 1= 1 as might be expected for the noninteracting wave function.
Howeverg,, = g, go to zero as — 0, and there is a “correlation hole” of radiusk ' because of the
antisymmetrization of the wavefunction, the nonlocal ramification of the Pauli exclusion principle, see Fig.
1. Note that the recovery tg,, = g,, = 1 forr — oo is oscillatory and with a power law tail

coq2krr)
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These slowly decaying oscillations, appearing here and in other quantities, and resulting from the sharp
discontinuity at the Fermi surface are known as Friedel oscillations.



Figure 2: Shaded volume gives the integral in the Foch term of the ground state energy.

Potential Energy for the Electron Gas

For the electron gas with a uniform positive background (the jellium model) the first term inlgags(
cancelled by the interaction with the positive background. This leaves the Foch term. There is a lowering of
the energy because as we have seen frponiike spins tend to stay apart, reducing the repulsive interaction.

To evaluate Eq.1(5) or (??) we need to calculate
Z Nk4q,0Mk,o -
k

This is easily evaluated geometrically, since the productn is unity inside the intersection of the Fermi
sea and a Fermi sea displaced-by (shaded in Fig.4)) and zero outside. The shaded volume is
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for ¢ < 2kr and zero otherwise. Thus
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The Foch term to the perturbation of the energy is then
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This gives for the total energy
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where the kinetic energy is given by summing over the Fermi sphere in the usual way. Evaluating the
higher order terms was a major focus of many in the early days of many body physics, using diagrammatic
perturbation theory or other approaches.

We can also calculate the excitation eneigy —the energy required to add an additional particle—
within the same approximation:
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with kinetic, Hartree and Foch terms. (Note in the later the interaction is only with the same spin particles—
thereis no spin suminthisterm.). Itturns out the for the Coulomb interaction, the last term gives a logarithmic
singularity atk = kg, so thatvg = de/0k is infinite. This is an unphysical result, and results from the
diverging potential at smalf. In this limit we must takescreeninginto account—an electron repels its
neighbors via the Coulomb interaction giving an effective positive screening cloud, so that the inter-electron
interaction is reduced. Using the Thomas-Fermi approximation, the same method we used in the calculation
of white dwarf stars (see the Appendix below), leads to the replacement

45 €? 4 ¢?
S 5 (39)
q q°+ 491 F
with the Thomas-Fermi wavevector given by
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We can think of this as replacing the screening thg’Ipotential with a dielectric constant
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with the Thomas-Fermi approximation to the dielectric constant
q2
err(q) =1+ LZF (42)
q
In real space this corresponds to a Yukawa potential
82
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with an exponential decay at large separations. This screened potential leads to a finite Fermi velocity. The
corresponding corrections to the ground state energy are i thein Eq. 37).
Diagrammatic Language

The approximation we have done can be expressed (if you like such things!) in diagrammatic language
as shown in Fig. ). The diagrams for the screening of the interaction (the last line of the figure) can be
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Figure 3: Diagrams for the Hartree-Foch calculation of the single particle propagator using the screened
interaction, with the screening calculated to lowest order.

expressed algebraically as
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wherell(g) is given (to lowest order) by the loop or “bubble” diagram, and corresponds to an approximate

evaluation of theolarizability of the electron gas. Actuallii is frequency dependeny (epresents|, w),
and the full dielectric constant screening the interaction
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is also frequency dependent. In the static and long wavelength limit, the expression reduces to the Thomas-
Fermi result. More generally we could use the expression for the bubble to give a better approximation to
I1. This gives theLindhard approximation to the dielectric constant. Using this interaction to evaluate the
properties of the electron gas is known asRsdom Phase Approximation RPA

Appendix: Thomas-Fermi Calculation of Dielectric Constant

The Thomas-Fermi approach balances the degeneracy pressure against the forces from the electrostatic
potential in a local approximation: at each point the degeneracy pressure is calculated for a gas at the local
density as for a homogeneous gas. We used this before in the physics of white dwarf Istatsiia 1 70f
Phl127aand trapped-atom Bose systemd.atture 7this term.
Suppose that there is a net potentidt) acting on the electrons, coming from some fixed set of charges

and the electrons themselves. The chemical potential must be constant, and is the sum of potential and kinetic
terms

V() +er(n(r)) = const 47)



wheren is the local electron densityy oc k2 o< n?/2 is the local Fermi energy, and we are considering low
temperatureszT < ¢p. To calculate the dielectric constant we assursmall external potential, and may
then linearize Eq.47)

2
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with ng, £ rg the values without the perturbation.
The potential derives from the sum of external charges-a#th from the electrons

V28V = 47 (pexs — €8n). (49)

Equations 48) and @9) are easily solved by Fourier transforming
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with the Thomas-Fermi wave vectgiven by
67 nge?
arr = : (51)
EF0
The poten~tial wiEhout the screening would b8,,, = —47p,. /g% and so we may introduce the dielectric
constanV = 8V,,,/e(q) with
2
(@) =1+ q;—;. (52)

This is singular at smal} due to the efficient screening at long wavelengths.
For the interaction between electrons, the “external” charge is provided by another electron. The effective
interaction in the Thomas-Fermi approximation is
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ascreenegotential finite ag — 0 in Fourier representation, antfakawa potentiadlecaying exponentially
at large separations in real space.

The Thomas-Fermi wavevector is typically comparable to the inverse spacing for the electron gas in
metals, although it actually scales as the inverse of the square root of the spacing
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