Physics 127c: Statistical Mechanics

Kosterlitz-Thouless Transition

The transition to superfluidity in thin films is an example of the Kosterlitz-Thouless transition, an exotic
new type of phase transition driven by the unbinding of vortex pairs. Many of the predictions of the theory
have been verified in experiments on thin films of'kd& a surface. This type of transition occurs in the
universality class of two dimensional XY models, where the broken symmetry variable is an angle: the phase
in superfluidity, the orientation of the spins in the xy plane for the magnet, etc.

The full treatment of the Kosterlitz-Thouless transition is a rather advanced topic, but the calculation
illustrates many of the techniques introduced in the first two terms, and the result is interesting!

The novel behavior of the transition arises from the long wavelength logarithmic divergence of the phase
or orientation fluctuations. It is therefore sufficient to take as the free energy
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where for the superfluid = ® andK = p;/ kT = (h/m)%ps/ ks T. From now on we will use the reduced
free energyF.

Special Features

Phase fluctuations diverge (This calculation mirrors the one on tBd Heisenberg modé@ Homework 4
of Ph127h)
Introducing the usual expansion in Fourier modes
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the free energy becomes
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with Q the area of the system. Equipartition gives
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and then the mean square fluctuation is
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where A is a largeg (small distance) cutoff, and the system siesets the smaly cutoff. The integral
diverges logarithmically for large systeni®,— oco.

Note that the free energy was only expanded up to quadratic order in deviati(xs of ;. By analogy
with the calculation for magnets, this is called the “spin wave approximation”.



Phase correlations decay with a power law We now calculate the decay of correlations of the phase or
angle coming from these smalfluctuations, again starting from Eq.)( We want to calculate the correlation
function

G(x) = (¢ *7O) = (cog0(x) — 6(0)) (6)

since this gives théy (x)1*(0)) correlation function for the superfluid, or the(x) - m(0)) correlation
function for the magnet (the average of the corresponding sin is zero since positive and mdgative (0)
are equally likely). Expanding in the Fourier modes
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The average is given by integrating over the Gaussian distribution ofdgagten by the Boltzmann factor
from the free energy Eq3J
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where the first term in the sum in the exponential in the numerator is from the Boltzmann factor, the second
is from Eqg. (7), and the products of exponentials has been written as a single sum.
The integrals are most reliably done by writigin real and imaginary parts

G(x) = (8)

where the fact that(x) is real means_q = 6; so thatR, is even andq odd ing. Then we can write the
sum in the numerator
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where the other terms such Rgsing - x vanish on summing ovey and—g. Now complete the squares
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where to get the last term ugeosq - x — 1)2 + (sing - X)? = 2(1 — cosq - X). The integrals OVeRy, Iy in
the numerator of Eq8]) cancel the integrals in the denominator (the shift of the center of the Gaussians does
not change the integral) so that
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and introducingp the angle ofj in the plane measured from the directiorxajives
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with A a largeqg cutoff. Without the Bessel function in the numerator the integral would diverge logarith-
mically from the smally range. Sincdy(q |x|) — 0 for g large, and/y(gq |x|) — O forq < 1/|x| we have
for largex
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with ¢ some constant. This gives for the correlation function

1 kT
T 2nK  2np,

G(x) o |x|7" with n (18)
Thus the order parameter correlation function decays@®ager lawwith an exponeni) that depends on
temperature. The correlations decay more rapidly ascreases, as you might expect.

Equation (L8) predicts power law correlations fall temperatures, whereas we would expect exponential
decay at large enough temperatures. We should actually have some confidence in the result. The calculation
was tractable because of the quadratic nature of the effective Hamiltonian. But thisrerigesm an
approximation that the deviations of the anghgs) from some uniform state are small (which we would
doubt), but from the assumption of smghadients i.e. that thespatial variationof 6(x) is slow, and the
difference between “neighboring”angles is small. The power law correlations at long distances comes from
the smallg part of the behavior, which is where this approximation should be good! What we have left out
is the possibility of vortex excitations, for which Eq.) ([does not apply everywhere. Equatidrg) turn out
to be accurate, until vortex excitations proliferate. How this develops is the next topic.

Vortex proliferation  We have seen that the energy of a single vortex depends logarithmically on the system
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and so we might expect no thermal excitation of a vortex. However the entropy, proportional to the log of
the number of ways we can put down a single vortex, also depends on the log of the system size. An estimate
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with C some numerical constant. The (reduced) free engsgy (E, — T'S,)/ ks T diverges with increasing
system size as )
F,=@K—-2InR+---, (21)

where the- .. denotes unimportant constant terms. As first pointed out by Kosterlitz and Thouless, this
diverging free energgwitches sigmat a critical temperaturéy; given by

(22)

Above this temperature, at least in the approximation of isolated voriités negative and vortices should
proliferate. Notice from Eq.1g) thaty = 1/4 atT = Txr so that the correlations decay|a$"*/* here.

Complete picture

Perhaps surprisingly, given the simplicity of the assumptions, the preceding results turn ouxach
correct with the one modification tha& (or py) is itself temperature dependent. There is a phase transition at
Tk . Above this temperature correlations decay exponentially. Below this temperature there is no long range
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Figure 1: Schematic of the Kosterlitz-Thouless transition.

order (consistent with the Mermin-Wagner theorem for any continuous order parameter in two dimensions).
However there are power-law correlations with the expon€nd given by Eq. {8) where the temperature
dependenp,(T) (as would be measured in an experiment) is to be used. BElgwthe long range order
is eliminated by the accumulation of small phase fluctuations (“spin wave theory”). The transition occurs by
the proliferation of free vortices, the topological defect of the broken symmetry. Since at any temperature
there are thermally excited vortex pairs, with small separations at low temperatures, probably a better way
to think of the transition is aswortex pair unbinding At T r the superfluid density jumps discontinuously
between a nonzero value and zero. The r&t® (Txr)/ ks Tk iS universaland takes on the value/2.
Power law correlations are associated with a critical point; the power law correlations Toxall’x 7 can
be understood in terms ofaaitical line. The correlations behave ag~* at Tk 7, again universal behavior
at the transition temperature.

The simple calculations break down in ignoring the effect of the vortices ofythedes. In fact the
vortices act to renormalize the stiffneksof these modes. This is what makgs— O forT > Txr, and is
why Eqg. (L8) is not correct at all temperatures. This can be understood using a RNG treatment, as outlined
in the next section.

RNG Treatment

We first want to see how the vortices change the effective long-distance stiffness constant. We already know
that vortex pairs reduce the mass flpy, (cf. the discussion of critical velocities lrecture 5 where the

vortex pair in the tube reduces the total flow). We can calculate the effect more completely from the change
in free energy of an imposed superfluid veloaity(In this chapter | will definey = V& without a factor of

h/m.) The full, renormalizeg; is then

F(v) — F(0)
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The free energy is
F=—inTr[e ] (25)
with the effective Hamiltonian (divided by T)
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Here Tr denotes the integral over all configurations of the vorticesyamd is the superfluid velocity field
due to the vortices. (The small angle fluctuations are supposed already included in the&K"aEepanding
out
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The first term is an additive constant, what we would have without vortices; the second plays the role of the
unperturbed Hamiltoniaiil, for the vortices (no external), and the third is the small perturbation. Now
expanding the exponential to second order in
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where the averagg), is with respect tady, and(v,), = 0 has been used. Using isotropy and homogeneity

we have
2
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Thus from Eq. 24)
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This relates the superfluid density to the velocity-velocity correlation function, a result reminiscent linear
response theory.
The velocityv, is due to the vortices. Now we introduce a configuration of vortices represented by the
vorticity densityn, (x)
V XV, = 271,(X)2 = Znizka(S(x — Xq), (34)

with theath vortex having sigrit, = +1 and positiorX,, (the higher charged vortices have a larger energy,
and can be neglected). We want to relatetheorrelation function to the vortex density correlation function,
which we will then evaluate from the statistical mechanics of the interacting vortices. The final result is
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It seems to me | should be able to do this by integrating Bd). directly, but the standard approach goes
through Fourier space.
Introducing the Fourier representation and usinga) - v, (q'), o 8q,—¢
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(Normally we would just evaluate the resulttpt= 0, but here we need to keep the limit.) In termsofq),
the Fourier transform of, (x) we can write

I (v,(@) - v, (~a)p = 4 im (2P, (37)
Now we want to calculat& (n,(q)n,(—q), for smallg:
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The first term is zero since the total vortex chafgézx (n,(X)) is zero. The second is odd m— x’ and
integrates to zero. This leaves the last term, which gives (doing the angular average, giving a fapr of 1
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Hence with Eq. §6) we get Eq. 85).

Thus from Egs. §3) and @5) we have our final formal result for the renormalization of the superfluid
density by vortices
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We are left with calculating the correlation function of the vortex density. The vortices interact with a

logarithmic dependence on separation, which in the present notation is

Eour = 27K In (M) , (42)

a
(where | have absorbed constants inside the logarithm into the small scaleaut®fie problem actually
reduces to a two dimensional gas of charges. Equatithi¢ analogous to the dielectric constant for the
charged gas: the polarization of intervening charge pairs changes the interaction of well separated charges.
This is a nontrivial problem! We can make progress assuming a dilute gas. This is reasonable if the core
energy of the vortex is large compareditgr’, or in other words if thdugacityy = exp(—E./kgT), is
small. In this limit we can evaluate the correlation function in terms of the Boltzmann factépfpr

(ny(X)ny(0)g = —2a~*y? exp[—ZnK In ('Z-')} , (43)
where the factor of—* is from two factors of the average density which we estimat@gs= a2y, and
the minus sign is because the charges must be opposite to get a low energy configuration. The factor of 2
is for the two configurations- at x and — at 0 and the reverse, but actually any numerical prefactor can
be absorbed into a slightly redefined fugacity, siiGeis not precisely known. The important part is the
dependence om, which is the exponential of the interaction potential.

It is convenient to rewrite Eq.4() in terms ofK ! = k3T /p,. Because we are assuming a dilute gas,
so that the second term is small, this finally gives
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This expression imagines starting with “microscopjcdnd K and calculating the “macroscopi® = K ®
taking into account the reduction in the total momentum and energy due to the polarization (realignment and
stretching) of the vortex pairs.

Inspecting the integral reproduces the elementary Kosterlitz-Thouless resit fos /2 the integral
diverges. We can understand this more completely using a renormalization group treatment allowing the
coupling constantX andy to depend on scale factbrand evaluating the integral over all scales piece by
piece. Suppose we integrate out the small separations betwa®iu/ = a(1+ §1)
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The first integral gives an additive correction that can be absorbed into &new
(K™Y = K+ 273y%1. (46)
The second integral can be put in the same form as before, now in terms of the:Guigfiefining a new:
()7 = Y2+ s+ K, (47)

These transformations leave the expressionkfgrunchanged, witlk — K’,y — y’,a — d/, and the
process can be iterated.
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Figure 2: RNG flows fork ~ andy generated by numerical solutions of Eq&5)(and ¢7).

The equations46) and ¢7) can be written as differential equations for the evolutiokof (/) andy (/)
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These are the RN@owsfor the Kosterlitz-Thouless transition. Some numerically generated solutions for
the flows are shown in Fig.. We have derived the results for small

The final step of the RNG is to rescale lengths> L/(1+ é1), so that the cutoff returns to its original
value. Thus lengths such as the correlation length evolve as

dL _ —L ie. Lxe™ (49)
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The liney = O is afixed line ForK ! < 7/2 the line isstable for K~ > 7/2 the line is unstable. The
superfluid state corresponds to initial value&kodndy such thay — Oandk ! — K ! < 7/2asl — oo.
The valueK , is the large distance reduced stiffness consightz T that would be measured in experiment.
As we increase temperature, the initydhcreases, anff decreases, until we reach a temperafige which
gives initial values ofy, K such that the RNG flow terminatesyat= 0, K1 = /2. For a slightly larger
temperature the RNG flows pass near this point, but then flow away to aagd K —X. Presumably this
corresponds to the disordered state, although we cannot follow the behavior te.ldfgeT = Txr the
physical (large length scale) superfluid density,is= (2/7)kg Tk r; for slightly larger temperaturess = 0.
Thus the phase transition is signalled bgiacontinuous jump in the superfluid densifihe ratio of the
jump in p, at the transition tdp times the transition temperaturetgiversal Note thatp, is a stiffness
constant, not athermodynamic variable, so this is not a first order transition. In fact the entropy is continuous,
and the specific heat show only a very weak singularitygt. This is because the energy in the vortices
is small—most resides in the elementary excitations or quadratic modes. However the vortices are vital to
the properties such as the superfluid density.Near 0, K% = 7/2 the flow trajectories are hyperbolae,
and the scaling behavior of other quantities such as the correlation length near the transition can be derived
from this. For example it is found that the correlation length diverges approaé@hiipndgrom above as
£ oc explc/+/T — T,), rather than the usual power law divergence.

Further Reading

The original paper i©rdering, Metastability, and Phase Transitions in 2-Dimensional Systmes. M.
Kosterlitzand D. J. Thouless, J. Phg¢4.181, (1973), availabléere Kosterlitzintroduced the RNG treatment

in Critical Properties Of 2-Dimensional XY-Mod&IPhysC7, 1046 (1974) ohere but the standard reference

on this isRenormalization, Vortices, and Symmetry-Breaking Perturbations in 2-Dimensional Planar,Model
by J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. BE§, 1217 (1977) oonline
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