
Physics 127c: Statistical Mechanics

Vortex Lines

Topological defects play a fundamental role in the properties of broken symmetry systems. In solids, for
example, dislocations limit the maximum strain or stress that the solid can support, and initiate plastic flow
beyond the elastic limit. In a superfluid or superconductor vortex lines play this role. Usually it is the
physics of vortex lines that limit the flow velocity, rather than the Landau critical velocity derived from the
excitation spectrum.

Topological Nature of Vortex Lines
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Figure 1: Contour integral defining quantized vortex line.

Since ei� is single valued, we can imagine a configuration of the superfluid order parameter in which
the phase increases by an integer times 2π as we circle a line in bulk 3d fluid or a point in thin film 2d fluid,
Fig. 1 ∮

∇� · dl = n × 2π (1)

with n a positive or negative integer. We can smoothly distort the contour, and the (quantized) value of the
integral will not change. There must be some point within the contour at which the phase is not defined. In
the simplest case there will be only one such point, and this is the quantized vortex of strength n. Of course,
it is only the phase description that has a singularity: the magnitude of the order parameter will smoothly go
to zero at this point (line in 3d), over a microscopic length scale (the correlation length for variations of the
magnitude).

Since we learn about the existence of a particular “defect” (i.e. higher energy configuration) of the
system with nontrivial short scale structure purely from the behavior at large distances, such a defect is
called topological. A topological configuration is robust, because small changes cannot alter the behavior
of the order parameter far away to change the quantized integral. The elementary defects n = ±1 can only
be prepared in pairs, not individually. The full topological structure is given by what is known as homotopy
theory. This is the group theory of the mapping of the space of degenerate order parameters (here the circle
of possible phase angles) onto the space—line, surface, points—at large distances containing and defining
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the defect (here the encircling contour). There is a nice review article on homotopy theory by David Mermin
(see Further Reading, below).

Energetics of Quantized Vortex Lines

It is easiest to first consider the two dimensional case where the vortex is a point defect. The energy (free
energy at nonzero T ) is given by

E = 1

2
ρ̄s

∫
(∇�)2d2x = 1

2
ρs

∫
v2

s d2x . (2)

To save writing lots of factors of h̄/m sometimes it is useful to use ρ̄s related to the usual ρs by ρ̄s =
(h̄/m)2ρs .

For a single quantized vortex of strength n located at the coordinate origin the phase field is � = nφ

with φ the polar angle, so that

vs = n
h̄

m

1

r
φ̂ (3)

(Oφ is a unit vector in the azimuthal direction), and the energy is

Ev = n2 × 1

2
ρ̄s

∫
dr 2πr r−2. (4)

The integral as written diverges at both small and large r . At small r we must recognize that the phase
description breaks down, so that we must cut the integral off at some lower cutoff, or core size, a, and
include a core contribution from the region where the magnitude of the order parameter decreases to zero.
Then if we suppose that the system is a disc of radius R we get

Ev = n2 × πρ̄s ln

(
αR

a

)
, (5)

where the number α gives the contribution from the core region. In three dimensions, for a straight vortex
line we would simply multiply this result by L the length of the line. Since the energy increases as n2, so
that an n = 2 line would be expected to split into two n = 1 lines, from now on we will only consider the
n = ±1 lines.

Since the energy is infinite as R → ∞ we might expect these configurations to never be important, but
this is not the case, particular in two dimensions. We begin to see this by considering the energy of a pair
of ± vortices at separation s. To consider more complicated geometries such as this it is convenient to play
some tricks on the energy integral. Note that we can write

E = 1

2
ρ̄s

∫
∇ · (�∇�) − �∇2� d2x . (6)

The second term is zero, since ∇2� = 0 is the Euler-Lagrange equation for minimizing the energy with
respect to the configuration �(x). The first term can be reduced to a surface integral by the divergence
theorem. However we must be careful since � is not single valued to include one or more mathematical cuts
across which the phase may jump by ±2π . Usually the contribution from the bounding contour at infinity
will disappear, so that only the contribution from these cuts remain

E = πρ̄s

∫
cuts

∇� · d� (7)
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Figure 2: Calculation of energy of pair of vortices

where the integral is a “surface integral” over the cut (a line in 2 dimensions) and d� is in the direction
normal to the cut in the direction of the 0 to 2π jump. It is easy to see this result reproduces Eq. (5) (for
|n| > 1 we would have |n| cuts).

The energy of a pair of ±1 vortices with separation s is now easy to calculate. We can place the cut
between the vortices, and then calculate ∇� here by superimposing the two vortex solutions—one reason
that Eq. (7) is easier to use than the original expression is that it is linear in the velocity, so we may use
superposition. This gives

Epair = 2πρ̄s ln
(αs

a

)
= 2πρs

(
h̄

m

)2

ln
(αs

a

)
. (8)

A vortex pair acts like a smoke ring: the velocity field from one vortex carries the other along, so that the
pair propagates at a speed

vpair = h̄

m

1

s
(9)

normal to the line joining the pair. We can also define an effective momentum (also known as the impulse)

ppair = 2πρs(h̄/m)s. (10)

This is then consistent with the Hamiltonian expression vpair = d E/dppair. The energy Epair is finite for
finite s. This means that in two dimensions vortex pairs may be excited thermally, and this turns out to be
key to understanding the phase transition.

In three dimensions a pair of vortex lines have an energy proportional to the length. Vortex rings have
a finite energy, of order ρ̄sr ln(αr/a) for rings or radius r , and so again may be excited thermally. These
thermally excited rings are important in limiting the superflow velocity, but do not in general provide a way
to understand the phase transition.

Breakdown of Superflow

Vortex pairs in 2d or lines or rings in 3d provide a mechanism for limiting the superflow velocity. Again we
will first consider the 2d case.

Consider flow around a 2d ring corresponding to a circulation of M quanta (i.e.
∮ ∇� · dl = 2Mπ . If

we “unwrap” the ring, we have flow in a rectangle of length L with periodic boundary conditions in one
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Figure 3: Geometry for considering the breakdown of superflow due to a vortex pair.

direction, and the superfluid speed is vs0 = (h̄/m)2π M/L , Fig. 3. Consider a vortex pair of separation s
oriented as shown. The flow from the vortex pair tends to cancel vs0. In fact if the pair grows from infinites-
imal separation to span the channel, the circulation is reduced by one quantum: a vortex pair provides a
dissipation mechanism for superflow! Lets calculate the energetics of this process.

We can use Eq. (7) now with two cuts: one at the vortex pair, and one (of strength M) at the ends. The
energy is

E = E0 + Epair(s) − πρs(h̄/m)

∫
vs0 · d� − πρs(h̄/m)M

∫
vs,pair · dA (11)

where E0 = 1
2ρsv

2
s0� is the flow energy without the vortex pair with � the area, Epair is the pair energy in

the absence of the flow, and the last two terms give the interaction energy between the pair and the flow vs0

with the first term the integral of the flow vs0 over the cut between the pair, and the last term the integral of
the superfluid velocity induced by the ring over the end section of the channel. The last two terms are in fact
equal 1. This gives

E = E0 + 2π(h̄/m)2ρs

[
ln

(αs

a

)
− vs0

h̄/m
s

]
. (12)

You can also calculate the last term as a ppair · vs0 term with ppair given by Eq. (10). As a function of s this
expression is positive for small s (actually the ln suggests a negative energy for small enough s, but this is
unphysical) increasing to a maximum at a separation smax = h̄/mvs0, and then decreasing and becoming
negative for large enough s, when the energy gained by the interaction with vs0 dominates. The maximum
energy is

�Emax = 2π(h̄/m)2ρs ln

(
γ h̄

mvs0

)
(13)

with γ some numerical constant.
We can imagine two mechanisms for the breakdown of superflow.
For the first, we might imagine an “extrinsic mechanism” where geometrical imperfections on a scale

of d might provide nucleation sites for vortex pairs for velocities vs0 > vc = h̄/md . The estimate of vc

depends on the scale of the imperfections, but is typically less than the Landau critical velocity.
For kBT � �Emax thermal fluctuations over the energy barrier may occur and provide an “intrinsic

mechanism” for the decay. In fact there is always some probability of such excitations proportional to the
Boltzmann factor

e−�Emax/kB T ∝ v
2π(h̄/m)2ρs/kB T
s0 . (14)

1This can be seen by a simple magnetic analogy. The circulation plays the role of a current, and vs the magnetic field. The two
expressions are then different ways of calculating the mutual inductance between the pair and the current sources of vs0 which is
like a solenoid.
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This gives a decay rate proportional to a power of the superfluid velocity

v̇s = −γ v p
s . (15)

We will see in fact that the transition temperature into the superfluid state is given by

(π/2)(h̄/m)2ρs(Tc) = kBTc, (16)

so that near Tc the power is p = 4. There is strictly dissipation for all flow velocities, and no critical velocity
in an ideal system in two dimensions. In practice the vortices may be pinned by substrate imperfections, and
persistent currents may then result.

In three dimensions vortex rings play the same sort of role as vortex pairs in two dimensions. The more
complicated geometry makes the calculations a little harder. You can find the details in the paper by Langer
and Fisher (see Further Reading). The expressions corresponding to Eqs. (5)-(10) for a ring of radius r are

Ering = πρ̄s 2πr ln

(
ᾱr

a

)
, (17)

vring = h̄

m

1

2r
ln

(
γ̄ r

a

)
, (18)

pring = 2πρs(h̄/m) πr2, (19)

with ᾱ, γ̄ numbers of order unity. The energy Ering − pringvs0 has a maximum of order

�Emax ∼ (π2/2)ρs(h̄/m)3v−1
s0 (20)

at a radius

rmax ∼ h̄

m

1

2vs0
(21)

(ignoring logarithmic factors). This gives the same estimate of extrinsic critical velocity. Now however, the
thermal activation process involves the Boltzmann factor

e−�Emax/kB T ∼ exp

[
−A

π2

2

(
h̄

m

)3
ρs

kBTvs0

]
(22)

where A takes care of the logarithmic factors. Except near Tc where ρs goes to zero this is a negligible rate,
and the extrinsic mechanisms dominate. However near Tc this predicts a critical velocity (such a function
“turns on” so rapidly that we may still define a critical velocity)

vc ∼ A
π2

2

(
h̄

m

)3
ρs

kBT
∝

(
1 − T

Tc

)2/3

(23)

using 2/3 as the approximate value of the superfluid density exponent. This temperature dependence is
indeed seen in experiment, first by Clow and Reppy.

As a final link in the discussion of flow dissipation by vortices, we can use the dynamic Josephson
relation to evaluate the pressure (or alternatively the temperature difference) needed to drive the flow through
a tube. Consider again Fig. 3, but now imagine this is a flow channel with a pressure across the ends, rather
than with periodic boundary conditions. The dynamic Josephson equation is

h̄��̇ = −�µ = −(�P − s�T )/n, (24)

(with n the number of particles per volume and s the entropy per volume). The rate of change of the phase
difference between the ends of the tubes is just 2π times the number of vortex pairs or rings that expand
across the channel per unit time, which is just the production rate in steady state. (Alternatively, single
vortex lines could grow out of one edge, e.g. nucleated by imperfections, and propagate across the channel.)
Hence a steady rate of vortex production must be balanced by a driving pressure or temperature difference.
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Further Reading

The review article by Anderson referenced in Lecture 4 remains useful. The article Topological Theory
of Defects by David Mermin, Rev. Mod. Phys. 51, 591 (1979) (online) gives a thorough discussion of
topological defects and homotopy theory. Early references on the critical velocity of superflow due to
thermal activation of vortex rings are Clow and Reppy, Phys. Rev. Lett. 19, 291 (1967), and Langer and
Fisher, Phys. Rev. Lett. 19, 560 (1967).
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