
Physics 127c: Statistical Mechanics

Weakly Interacting Bose Gas

Bogoliubov Theory

The Hamiltonian is

H =
∑
Ek
εkb
+
Ek bEk +

1

2�

∑
EkEk′ Eq

ũ(Eq)b+Ek+Eqb+Ek′−EqbEk′bEk. (1)

We will look at the weakly interacting system at low temperatures. Already, without interactions, we have
Bose condensation 〈

b+0 b0
〉 = N0 = N. (2)

Interactions will reduce this, but if they are weak thedepletion of the condensatewill be a small fraction
(N −N0)/N � 1, or ∑

Ek

′ 〈
b+Ek bEk

〉
� N, (3)

with
∑′ denoting the sum over allEk 6= 0. With the macroscopic occupation of the zero mode we can neglect

the quantum fluctuations relative to the mean (cf. the classical treatment of electromagnetism)

b0→ N
1/2
0 , b+0 → N

1/2
0 (4)

whereN0 is just a number (called ac-numberto distinguish it from an operator).
Equation (4) is now substituted into the Hamiltonian, followed by expansion in(N−N0)/N . The kinetic

energy term is unchanged, since there is no contribution from theEk = 0 state. The potential energy can be
written as the sum of terms at successive order (decreasing powers ofN

1/2
0 ) V = V0+ V1+ · · · with

V0 = 1

2�
ũ(0)N2

0 (5)

V2 = N0

2�

∑
Eq

′
ũ(Eq)(b+Eq b+−Eq + bEqb−Eq + b+−Eqb−Eq + b+Eq bEq)+ ũ(0)(b+Eq bEq + b+−Eqb−Eq). (6)

(The first order termV1 is zero by momentum conservation.) It’s convenient to combine all theũ(0) terms

1

2�
ũ(0)N2

0 +
N0

2�

∑
Eq

′
ũ(0)(b+Eq bEq + b+−Eqb−Eq) '

1

2�
ũ(0)N2 (7)

leaving

V
′
2 =

N0

2�

∑
Eq

′
ũ(Eq)(b+Eq b+−Eq + bEqb−Eq + b+−Eqb−Eq + b+Eq bEq) (8)

so that we can write the Hamiltonian asH = const+H1 with H1 the part to be solved

H1 = 1

2

∑
Eq

′
[εq + n0ũ(Eq)](b+Eq bEq + b+−Eqb−Eq)+ n0ũ(q)(b

+
Eq b
+
−Eq + bEqb−Eq) (9)

wheren0 = N0/� is thecondensate densityand since the first term inV
′
1 mixesEq and−Eq we have explicitly

written the kinetic energy terms fromEq and−Eq.
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The momentum state creation and annihilation operatorsb+Eq , bEq are no longer ladder operators of the
Boson Hamiltonian. We look for new creation and annihilation operatorsα+Eq , αEq that do have this property,
i.e. operators satisfying

[αEq, α+Eq ′ ] = δEq Eq ′ (10a)

[α+Eq , α
+
Eq ′ ] = 0= [αEq, αEq ′ ] (10b)

and in terms of which the Hamiltonian has the form

H1 =
∑
Eq
Eqα

+
Eq αEq + const. (11)

We look forα+Eq , αEq in the form

αEq = uqbEq + vqb+−Eq, (12)

α+Eq = uqb+Eq + vqb−Eq, (13)

with uq, bq depending only on|Eq| and real. This type of transformation, preserving the commutation rules, is
called a canonical transformation. This from of the ansatz is motivated by the waybEq andb+−Eq appear inH1.
We can also argue thatα+Eq should create momentum̄hEq—which a linear combination of creating atEq and
destroying at−Eq accomplishes. Note thatα+Eq no longer adds a particle to the system! This is OK because
the condensate soaks up any deficit. Sorry about the notation:uq is not related tõu(Eq)!

We first check the commutation rules

[αEq, α+Eq ] = u2
q [bEq, b

+
Eq ] + v2

q [b
+
−Eq, b−Eq ] (14a)

= u2
q − v2

q . (14b)

So we set
u2
q − v2

q = 1 (15)

and can then invert Eq. (12)

bEq = uqαEq − vqα+−Eq, (16a)

b+Eq = uqα+Eq − vqα−Eq. (16b)

These expressions can then be used to evaluateH1 in terms of theα

H1 =
∑
Eq

′
[(εq + n0ũ(Eq))v2

q − n0ũ(Eq)uqvq ]

+ 1

2

∑
Eq

′
[(εq + n0ũ(Eq))(u2

q + v2
q)− 2n0ũ(Eq)uqvq ](α+Eq αEq + α+−Eqα−Eq)

+ 1

2

∑
Eq

′
[−2(εq + n0ũ(Eq))uqvq + n0ũ(Eq)(u2

q + v2
q)](α

+
Eq α
+
−Eq + αEqα−Eq). (17)

We now chooseuq, vq to eliminate the last term

2uqvq
u2
q + v2

q

= n0ũ(Eq)
εq + n0ũ(Eq) . (18)
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Sinceu2
q − v2

q = 1 this is most easily solved by introducing

uq = coshφq, vq = sinhφq (19)

and then Eq. (18) is

tanh 2φq = n0ũ(Eq)
εq + n0ũ(Eq) (20)

and

u2
q + v2

q = cosh 2φq = εq + n0ũ(Eq)
Eq

(21)

2uqvq = sinh 2φq = n0ũ(Eq)
Eq

(22)

with

Eq =
√
(εq + n0ũ(Eq))2− (n0ũ(Eq))2 (23)

=
√
h̄2q2

2m

(
2n0ũ(q)+ h̄

2q2

2m

)
. (24)

With these resultsH1 can be simplified

H1 = −1

2

∑
Eq

′
(εq + n0ũ(Eq)− Eq)+

∑
Eq

′
Eqα

+
q αq (25)

giving the desired form. We recognize thatEq is the excitation energy spectrum of the new Bosons. Notice
thatEq is linear at smallq

Eq '
√
n0ũ(0)/mh̄q (26)

but crosses over to the free particle quadratic form forq &
√
mn0ũ(0)/h̄. The linear spectrum at smallq is

crucial to the phenomenon of superfluidity.
Sinceα+Eq , αEq are creation and annihilation operatorsand ladder operators of the Hamiltonian, we can

calculate physical quantities as we did for the harmonic oscillator. For example the ground state of the
interacting system|ψ0〉 satisfies

αEq |ψ0〉 = 〈ψ0|α+Eq = 0 for all Eq. (27)

Condensate Depletion

The condensate depletion, or the number particles excited out of the zero momentum state by the interactions
in the ground state, is

N ′ = N −N0 =
∑
Eq

′ 〈
ψ0

∣∣∣b+Eq bEq∣∣∣ψ0

〉
(28)

=
∑
Eq

′ 〈
ψ0

∣∣(uqα+q − vqα−q)(uqαq − vqα+−q)∣∣ψ0
〉

(29)

=
∑
Eq

′
v2
q =

∑
Eq

′1
2

(
εq + n0ũ(Eq)

Eq
− 1

)
. (30)
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Since the term in() becomes unity whenEq ' εq , i.e. except for the small range ofq (for weak interactions)
where the spectrum is linear, we can replaceũ(Eq) by ũ(0) = g, say. Then converting theEq sum to an integral
(noting that theEq = 0 term gives negligible contribution)

N ′ = �

(2π)3
4π
∫ ∞

0
dq q2 1

2

(
h̄2q2/2m+ n0g√

(h̄2q2/2m)(2n0g + h̄2q2/2m)
− 1

)
. (31)

Substitutingy =
√
h̄2q2/2mn0g gives

N ′

N0
= 1

4π2

1

n0

(
2mn0g

h̄2

)3/2 ∫ ∞
0
y2

(
y2+ 1

(y4+ 2y2)1/2
− 1

)
dy. (32a)

The integral is
√

2/3, so that
N ′

N0
= 8

3

(
n0a

3

π

)1/2

(33)

wherea = mg/4πh̄2 is known as the scattering length.
Note that the depletion of the condensate is small for weak interaction,g small, but the expansion ing

is nonanalytic. This shows us that we could not get the results by simple perturbation theory: the canonical
transformation goes beyond this.

Other Thermodynamic Properties

Since we have the excitation energy spectrum, and can write any physical operator in terms of the corre-
sponding creation and annihilation operatorsα+Eq , αEq (via their expressions in terms ofb+Eq , bEq) we can now
calculate the thermodynamic properties at nonzero temperature. In this, we neglect the interaction between
thenewBosons, which would arise from the termsV3 andV4 containing 3 and 4α operators. This is OK
for weak interactions, exceptverynear the superfluid transition temperature, where we expect the universal
fluctuation behavior characteristic of superfluids. This universal behavior derives from the interactions. The
linear spectrum at smallq corresponds to phonon excitations (you can check that the slope is just the speed
of sound in the interacting gas.) The low temperature thermodynamics will have the familiar power law
behavior for these excitations, namely aT 3 specific heat. The normal fluid density will grow asT 4.

Further Reading

Now would be a good time to reviewLecture 15and problem 3 ofHomework 7for Ph127awhere the
physics of superfluidity was discussed. In particular, the importance of the linear spectrumεk ∝ k (rather
thanεk ∝ k2) and the notion of thenormal fluid densitywere discussed.

Pathria §10.2-10.7 discusses the weakly interacting Bose gas.
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