
Physics 127c: Statistical Mechanics

Application of Path Integrals to Superfluidity in He 4

The path integral method, and its recent implementation using quantum Monte Carlo methods, provides both
an intuitive understanding and a computational approach to Bose condensation and superfluidity in strongly
interacting Bosons such as liquid He4. I will briefly discuss Feynman’s calculation of theλ-transition from the
early 1950s, and how to formulate the condensate density and superfluid density in the path integral approach.
See the references in “Further Reading” for more details. This application provides a nice illustration of the
use of the path integral method in quantum statistical mechanics.

Feynman’s Theory of theλTransition

(a) (b)

Figure 1: Paths contributing to the partition function for 3 particles. The red, hollow circles denote the initial
and final position of each particle, and the black filled circles are the intermediate positions. For Bosons
we must include paths such as in (b) which result in exchanges amongst the particles. (For Fermions paths
would conetribute with a sign depending on the order of the permutation.)

For a Bose system ofN particles the partition function is

Z = ρ̄B(x, x;β) =
∫
d3Nx

1

N !

∑
P

ρ̄(x, Px;β) (1)

so that the path integrals contributing toZ must includeexchange loopsin which the path results in permu-
tations of the particles, Fig.1. In terms of the paths

Z = ∫x(0)=P [x(βh̄)]Dx(t)exp

{
−1

h̄

∫ βh̄

0
dτ
[m

2
ẋ2+ V (x(τ )

]}
. (2)

When do the exchanges become important? Long paths are costly because of theẋ2 term in the expo-
nential. At best, ignoring any potential cost and supposing two particles each move the nearest neighbor
separationd the weight of an exchange path is of order (estimatingẋ from a straight path)

exp

[
−2

h̄

m

2

(
d

βh̄

)2

βh̄

]
∼ exp

[
−md

2kBT

h̄2

]
∼ exp

[
−
(
d

λ

)2
]

(3)

with λ the thermal de Broglie wave length. The resultd ∼ λ is the basic criterion we have arrived at before
for the importance of quantum effects. At high temperatures the paths contributing toZ will typically involve
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Figure 2: Typical paths from Monte Carlo calculations of the partition function of 6 He4 at liquid densities.
The first panel is at 2K and the second at 0.75K. The paths have been smoothed (80 and 53 imaginary time
slices were used in the actual calculations) and the simulation region is copied 4 times in the figure to make
the geometry clearer. Axes labels are in Angstrom. [From Ceperley (1995)]

only small excursions of each particle. At low temperatures, whenλ & d there is little cost from longer
paths, and exchanges become possible. This is shown in actual Monte Carlo calculations on He4 in Fig. 2.

Feynman suggested that theλ-transition, and the onset of Bose condensation and superfluidity, could be
understood as the proliferation of infinite (or system spanning) exchange loops.

First he wanted to take into account the strong interaction. If the strongly repulsive cores overlap along the
path, there is an enormous penalty from the potential term. Thus Feynman suggested the particles avoid each
other, and the cost is less if the other particles move out the way (the cost1x2 is less than(d +1x)2− d2).
He supposed that for a leg of the exchange loop of lengthr a number of orderr/d particles must move a
distanced ′out of the way in an imaginary timeβh̄/n. The value ofd ′ depends on the separationd and the
hard core radius. Thus the contribution to the quantity in the exponential is

mr2kBT

2h̄2 (4)

from the particle in the exchange loop and

n

h̄

m

2

(
d ′

βh̄/n

)2
βh̄

n
= md ′2kBT

2h̄2 n2 = mr2kBT

2h̄2

(
d ′

d

)2

(5)

from the particle moving out the way. The correction Eq. (5) can be taken into account by replacing the mass
in Eq. (4) by an effective mass

m′ = m
[

1+
(
d ′

d

)2
]
. (6)

Then the integral along the exchange path can be calculated for free particles of massm′, which is given by
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the diffusion expression. This leads to the estimate of the free energy

e−βF =
∫

1

N !

∑
P

(
m′

2πh̄2β

)3N/2

exp

[
− m′

2h̄2β

∑
i

(x(i) − Px(i))2
]
f (x(1), x(2) . . . x(N))d3x(1) . . . d3x(N)

(7)
wherex(i)−Px(i) is the distance between the initial and final position of particlei in the permutationP , and
f is a function that weights the initial configurations (e.g. something likee−βU with U the potential energy).

The weight functionf will give configurations where the particles are separated by distanced. For a
given size loop, the exponential suppression is less if each leg is between nearest neighbors with separation
d rather than having fewer, longer legs. Thus Feynman supposes only nearest neighbor loops are important,
and then each(x(i) − Px(i))2 is aboutd2. Then

e−βF = 1

N !

(
m′

2πh̄2β

)3N/2∑
P

yn(P ), (8)

where

y = exp

(
−m

′d2kBT

2h̄2

)
, (9)

andn(P ) is the total number of sides of the polygons forming all the exchange loops in the permutationP .
The problem is reduced to loop counting in a random liquid like configuration. Feynman argues that there
is a transition involving the importance of large loops: “A single large polygon ofr sides contributes a very
small amountyr with y < 1. But a large polygon can be drawn in more ways than a small one. Increasing
the lengthr by one increases the number of polygons available by a factor says (perhaps 3 or 4) although the
contribution of each is multiplied byy. Thus ifsy < 1 (highT ) large polygons are unimportant. AsT falls,
suddenly whensy = 1 the contributions from very large polygons (limited by the size of the container) begin
to be important.” He then went on using various tricky arguments to attempt to solve the statistical mechanics
of loops given by Eq. (8), for which I refer you to his original paper, or his bookStatistical Mechanics.

Expressions for thermodynamic quantities can be calculated from Eq. (7) by differentiation in the usual
way, supposingf does not depend on temperature. For the internal energy

U = U0+ 3

2
NkBT − m′

2h̄2 (kBT )
2
〈
R2
〉

(10)

with R2 =∑i(x
(i) − Px(i))2, and for the specific heat

C

NkB
= 3

2
− 2

m′kBT
2h̄2

〈
R2
〉+ (m′kBT

2h̄2

)2 〈
R4− 〈R2

〉2〉
. (11)

Elser evaluated these expressions for loops on a cubic lattice using Monte Carlo methods, and, after choosing
m′ to match the transition temperature, obtained quite good agreement with experimental measurements, Fig.
3.

Condensate Density

The condensate fraction isN0/N whereNp is the number of particles in momentum statep. For a many
particle wavefunction in the momentum representation9̃ the probability of finding a particular particle in

statep is given by summing
∣∣∣9̃∣∣∣2. Thus

Np = N
∑

p2,p3...pN

∣∣∣9̃(p,p2 . . . ,pN)
∣∣∣2 . (12)
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Figure 3: Calculations of the specific heat from the flucutation term in Eq. () for 203 atoms on a cubic
lattice (open circles) by Elser. Also shown are full path integral Monte Carlo calculations (triangles), and
experimental results (solid line). [From Ceperley (1995)]

Returning to the coordinate representation by Fourier transforming

9̃(p1,p2 . . . ,pN = (V )−N/2
∫
9(x1, x2 . . . xN)e−i(p1·x1+···+pN ·xN)/h̄, (13)

and using ∑
p

eip·x/h̄ = V

(2πh̄)3

∫
d3p eip·x/h̄ = δ(x) (14)

gives

Np

N
= 1

V

∫
d3x e−ip·x/h̄

[∫
· · ·
∫
9∗(x1, x2 . . . xN)9(x1+ x, x2 . . . xN)d3x1 . . . d

3xN

]
, (15)

and so the condensate density

N0

N
= 1

V

∫
d3x

[∫
· · ·
∫
9∗(x1, x2 . . . xN)9(x1+ x, x2 . . . xN)d3x1 . . . d

3xN

]
. (16)

At nonzero temperature the9∗9 is replaced by the density matrixρB = ρ̄B/T rρ̄B , so that

N0

N
= 1

V

∫
d3x

∫
· · ·
∫
ρ̄B(x1, x2 . . . xN ; x1+ x, x2 . . . xN) d3x1 . . . d

3xN∫
· · ·
∫
ρ̄B(x1, x2 . . . xN ; x1, x2 . . . xN) d3x1 . . . d3xN

. (17)

(This is the off-diagonal element of the one particle density matrix—the density matrix integrated overN−1
coordinates, and the existence of the condensate was described as off-diagonal long range order (ODLRO)
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Figure 4: Left panel - sample configuration of one “cut” chain given by QMC for Helium at 0.75K; right
panel - condensate fraction given by such calculations (open circles) and neutron scattering experiments
(crosses and dashed line). [From Ceperley (1995)]

by Penrose and Onsager in their pioneering early work on the subject.) In terms of paths, Eq. (17) is the path
integral for paths with ends separated byx relative to the path integral for closed paths, averaged over all
x. In a Monte Carlo calculation this is given by the fraction of the volume covered by the separation of the
ends of a cut chain. ForV large, the average is dominated by large separations, and so it is the probability
of macroscopic end separations.

Superfluid Density

Periodic b.c.

A

L

ÿ

A

Figure 5: Periodic geometry for calculating the superfluid density.

Pollock and Ceperley and Ceperley derive a nice expression for the superfluid density in terms of the
winding numberof paths. I find their derivation hard to follow, so this is my version. You might prefer the
originals! The problem can be formulated in terms of the statistical mechanics with moving walls, or in a
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rotating system, but I find it cleaner to imagine a vector potentialA coupling to a fictitious chargeq on each
Boson, which makes the calculation analogous to the ones we did in superconductivity.

With a constant vector potential the Hamiltonian takes the form

H =
N∑
i=1

(pi − qA/c)2

2m
+ V (xi) (18)

=
N∑
i=1

[
p2
i

2m
+ V (xi)

]
− q

mc
P · A +O(A2) (19)

with P the total momentum.
Consider a periodic geometry withA along the periodic direction. Physically this would correspond to a

torus of superfluid with a “solenoid” at the center acting as the source ofA. Note that there is noB = ∇ ×A
at the torus, so for a normal fluid there would be no dependence of the free energy onA. The superfluid shows
the effect ofA in an analogy with the Aharanov-Bohm effect. The expression for the superfluid momentum
density (mass times velocity) is

gs = nsh̄(∇φ − q

h̄c
A) (20)

with ns the superfluid (number) density. With the chosen gauge the phase gradient∇φ remains zero when

smallA is switched on since the circulation
∮
∇φ ·dl is fixed. Thus there is a superflow, and a corresponding

increase in the free energy1F ∝ A2. The total momentum can be calculated by taking derivatives with
respect toA of F = −kBT ln T re−βH with H given by Eq. (18) in the usual way

P = −mc
q

∂F

∂A
= −V ns q

c
A. (21)

Hence

ns = 1

V

mc2

q2

∂F

∂(1
2A

2)
. (22)

1

2
3

Figure 6: Path integral calculation ofns . The dots represent the intial (and final) positions of the particles.
The phase8(path) from the vector potential is only nonzero for paths such as (3) which wind around the
torous.

Now we calculateF from the path integral expression. We know from standard quantum mechanics,
or by direct calculation, that the effect of the vector potential in the Hamiltonian is to multiply each path
contribution by the phase factor given by integratingA along all the particle paths, i.e.

ei8(path) = exp

[
iq

h̄c

N∑
i=1

∫ x(i)

x′(i)
A · dl

]
. (23)
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In the free energyx = x′ or x = Px′, and the integral reduces to the integral ofA along the exchange loops.
For constantA this integral is zero unless the path winds around the torus, and then

8(path) = q

h̄c
LAW, (24)

withW thewinding numberequal to the number of times the path winds around the torus in the direction of
A.

Figure 7: Calculation ofns/n using the mean square winding number from path integral Monte Carlo
calculations (open circles). The solid circles are from a different method for finite droplets of He4. [From
Ceperley (1995)]

The free energy is given by

F = −kBT ln
∑
paths

ei8(path) × (path integral)A=0, (25)

and the difference from theA = 0 free energy is

1F = −kBT ln

[∑
pathse

i8(path) × (path integral)A=0∑
paths(path integral)A=0

]
== −kBT

〈
ei8(path)

〉
0 , (26)

where the average is over the paths forA = 0. Expanding to second order

1F = 1

2
kBT

〈
8(path)2

〉
0 =

mkBT

2h̄2 L2
〈
W 2
〉
0 . (27)

And so the superfluid density is given in terms of the mean square winding number of the paths

ns

n
= 1

N

mkBT L
2

h̄2

〈
W 2
〉
0 . (28)

If the geometry is periodic in all three dimensions, then replace
〈
W 2
〉
0 →

〈
W 2
〉
0 /3 with

〈
W 2
〉
0 the mean

square winding number summed over all directions. Results for Monte Carlo calculations of liquid He4 are
shown in Fig.7.
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