Physics 127c: Statistical Mechanics

Quantum Monte Carlo

Monte Carlo methods are good for evaluating probabilistic integrals. A key feature of quantum mechanics

is that we must deal with complex amplitudes rather than real positive probabilities. Intrinsically, Monte
Carlo methods are not a “natural” match with quantum problems, and can only be successfully used where
the quantum problem can be made to look like some classical problem. For example, the ground state
wavefunction of a single particle or Bose system is everywhere positive, and so we can evaluate integrals
over this wavefunction by Monte Carlo methods. This is a useful and much used approach. On the other hand
excited states of these systems, and the ground state of Fermi systems necessarily have regions of positive
and negative wave function. This makes the probfeochharder, and dealing with the “sign problem”
remains an active research area.

Variational Methods

Even the familiar variational method when used in a many body situation leaves multidimensional integrals
that must be evaluated, so that Monte Carlo methods are necessary. An important example of this was
McMillan’s calculation [L] of the condensate fraction in zero temperature superflufd Heill only give the
briefest outline here to show where the Monte Carlo comes in, and refer you to the original for the algebraic
details.

For noninteracting Bosons the ground state wavefunction is simply a constant. To take into account the
interactions McMillan used the trial wavefunction consisting of a product of functions of the pair separations
known as aJastrow wavefunction
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The functiony is to take into account the pair correlations introduced by the interactions (particularly the
hard core of the atoms). The symdf[l.<j is the product over all pairs, counted once. The product can be
organized aﬂjzl,N;,.:Lj, hence the notation. The constarngsindp are to be optimized by minimizing the

ground state energy
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with u(r;;) the pair potential. Note thab is symmetric in the particle coordinates as required for a Bose
wavefunction, and is real. Deriving the second form of the energy expression requires a few lines of algebra
(see the original paper if you have trouble with this). Since
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this looks like the the Boltzmann average with respect t@lassical effective HamiltoniangH,;r =
ij 2u(r;;), so that the result can be evaluated by Monte Carlo methods.



The condensate density is given as
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wheren is the densityN/Q and the angular bracket denotes the average with resp&ct, tawhich again
is evaluated by Monte Carlo methods. (The last expression arises since-$oro the average should
factorize.)

McMillan found ng/n ~ 0.11 using systems aV = 32 andN = 108 particles in periodic boundary
conditions. The limitation to &erysmall number of particles is because the calculation invaNesmen-
sional integrals. Clearly such a small number of particles is not sufficient to show the condensate exists—note
the expression requires taking— co. Howeverif we believe the condensate exists from other arguments,
the McMillan calculation provides an estimate of the fraction of particles involved. This estimate of about
10% has survived more modern calculations and also experiment, although experiment too involves many
difficulties in implementation and interpretation, so that the results are not completely reliable.

Path Integral or the Trotter Method

The method of the previous section suffers the limitation of all variational methods—the accuracy of the
answer is limited by the ingenuity of the trial wavefunction. The methods of the present section are in
principle exact, i.e. the accuracy is limited by discretization and statistical errors, that can be reduced by
using more powerful computers and longer runs.

The general expression needed to calculate finite temperature quantum averages is the matrix
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with |&) some convenient choice of a complete set of states with a simple representation (e.g. given by
defining eacly-spin to be up or down in a spi;fusystem, or position coordinates of each particle in a many
particle system). The density matrix4gTr and the partition function i€ = Trp = Y, (o |e## | ). It
is convenient to think o#—# as the evolution in imaginary time.

Equation 6) is a nice formal expression, but we cannot evaluate the expression exactly because we cannot
actually form the exponential of an operator, and we cannot list all the states for a large system. The trick to
calculatep is to write this evolution as the sum of small steps

e PH — (e*’H)n with T=8/n (7)

with n large so that is small, and then using completeness Eﬁ |B) (B] to give
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Smallz corresponds to a large effective temperature, so that in the matrix ele(mam‘(é” ] y) etc. quantum
effects will be weak. In particular iff is the sum of two noncommuting pams = H, + H, then

e—rH ~ e—rHle—er (9)



since the corrections from the commutatéf,[ H,] is O(z?). Then also introducing the completeness
relation between this product we have
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Now if H; and H, separately consist of the sum@immutingeerms, this converts the problem to one that
in many cases can be reformulated as an effectassicalproblem in dimensiod + 1 (with d the space
dimension of the original problem) with thmaginary timer giving the extra dimension. Averages of an
operatorA are given by
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which is the ratio of two averages weighted fyy,,. The method is to sampl&,.., EQ. (L0) through Monte
Carlo methods on its classical equivalent. This should become clearer by considering a couple of examples.

Quantum Spins

‘\ L] L]
H
> 2
I
c|g Hy
oO)l.=
3| ton,
E T
v A
1+1J 1-tJ 21J
21J 1-1J 1+1J

Figure 1: Shaded squares show interactions in the classical effective Hamiltpidrhere is a spin at each

solid dot, and space runs horizontally and imaginary time vertically. At successive imaginary time steps the
interaction is between alternate spin pairs. The interaction squares with nonzero statisticabweéigirtd

the value of this weight (given by the matrix elements of the quantum Hamiltonian) are shown below.

Consider for simplicity the one dimensional nearest neighbor%;hieisenberg model with Hamiltonian

H=-J] Z 0 Oip1=—J Z(oizaiil + 26i+aijrl + Zai_aifrl) (12)

with & the Pauli spin matrices, and™ = %(ax +io,) the spin raising and lowering operatossf(||) = [1),
etc.). The complete set of states can be chosen as the product states given by the spin on each site being
up 4 or down|. We write H as the sum over oddd;) and even f,) terms

H=-JY 6;6u41—J Y G Gip1 (13)
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Each sum consists of commuting terntg (= —J (o1 - 02+ 03-04+ - - - ) etc.) that can be treated separately.
Thus<a |e‘”’1| ﬁ) is the product of pairwise terms involving the matrix elements of (expand the exponential
for smallt)

1+1tJ 0 0 0
- S 0 1-17J 2tJ 0
exp(rJoy - 0p) =~ 0 or J 1—1J 0 (14)
0 0 0 1+ 1J

with respect to the basis statgs, = 11, 11, |1, | J. The contribution to Eq.1(1) of a pair of spins over

some imaginary time interval is interpreted as the Boltzmann factor”« for the plaquette given by the

two spins in al 4+ 1 dimensional classical system at fictitious temperature 1 and with Hamiltéhjavhere

H,(s1, 52, 81, s5) depends on the spin configurations at the beginning and the end of the time interval and is
given by the corresponding matrix element of Egf)(

exp[—Hu (s1, 52, 51, 55) | = [exp(z J o1 - 52)]S1S2’S/1S/2 . (15)
ForexampleH. (1] {1) = — In(2tJ). This gives us thquantunproperties in terms of an effective classical
problem in 1+ 1 dimension, for example
Z — Trﬁ — Z e_Hz‘l({Si,n}) (16)

states
{Si,n }

(see Fig1). The distributione—#= @i} js sampled by standard Monte Carlo methods.

Notice that the success of the method requires the matrix elements id4qo (be positive or zero,
since they become the statistical weights of the classical problem. Thus not all guantum spin problems can
be treated in this way. In fact the antiferromagnet would give negative weights for the off-diagonal elements,
and so the method would apparently break down

The expansions in smatl introduce errors into the method: these can be systematically reduced by
increasing: (and the size of the computer!). There will also be statistical errors that can be reduced by
sampling more configurations.

Interacting Particles

(See Ceperley and Pollock][for more details.) Here we uge) — |x) wherex = X, Xp, ... Xy is the
vector representing the position of theparticles, and

P, X B) = (¥|e P X). 17)

The Trotter decomposition tells us to looka(, X'; ) = (¥ e ™ | ¥') = (¥ |e "Mt~ "H2| ¥') with T = B/n
small, and we splitf = H;, + H, with H; the kinetic energy, andl, the potential energy, and consider the
smallt evolution underH; and H, separately.

The HamiltonianH; is just that of free particles, and the imaginary time evolution is given by the modified

Schrodinger equation
2
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linfactona bipartite lattice such as a simple cubic lattice a simple transformation in which the spins are rotated:tatough
the x-axis on one of the component lattices can be used: in the new basis the matrix elements are all positive. However for other
lattices, such as a triangular lattice, this cannot be done.



with V2 the N-particle Laplacian. This is just thdiffusionequation, with solution
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The potential term (evolution undéf,) gives

pE X T) = (% e | %) = e VO - 3. (20)

Note that at smalt the evolution undei; gives nonzero only foi close tox’. This means it does not

matter which order we writéZ; and Hyin the splitting of H, the basic idea of splitting the evolution into
smallt steps.

Figure 2: Classical system giving 4¢x, x; 8) for 3 quantum particles using= 5. The dashed and dotted

lines signify the interactiorV ({xV}) depending on the position of the particles at “timesind 2 (other
interactions not shown).

Now we have

p(X, X B) = ConStS/.../d3Nx(l)d3Nx(2)...d3Nx("_1)

X exp(—;—zr(i(b - )?)2) exp(—tV(ED)) exp(— Z;r x® — )—C»(1>)2> exp(—tV (x®))

X ---exp<— 2;':1% x' - y?(”‘l))z) exp(—tV(X)). (21)

We can again interpret this as the partition function of a classical systeshains ofn springs of spring
constantn /A%t? with a potentialV (x/)) tethered between the end poiitandx’ at temperature.
For Trp(x, X; B) the final positiont’ = x and we integrate over afl as well. This example is sketched

in Fig. 2 for 3 quantum particles usinggsplitting ofn = 5. Equation 21) is a discrete version of thgath
integral formulation of the statistical mechanics of interacting many body systems.
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