
Physics 127c: Statistical Mechanics

Quantum Monte Carlo

Monte Carlo methods are good for evaluating probabilistic integrals. A key feature of quantum mechanics
is that we must deal with complex amplitudes rather than real positive probabilities. Intrinsically, Monte
Carlo methods are not a “natural” match with quantum problems, and can only be successfully used where
the quantum problem can be made to look like some classical problem. For example, the ground state
wavefunction of a single particle or Bose system is everywhere positive, and so we can evaluate integrals
over this wavefunction by Monte Carlo methods. This is a useful and much used approach. On the other hand
excited states of these systems, and the ground state of Fermi systems necessarily have regions of positive
and negative wave function. This makes the problemmuchharder, and dealing with the “sign problem”
remains an active research area.

Variational Methods

Even the familiar variational method when used in a many body situation leaves multidimensional integrals
that must be evaluated, so that Monte Carlo methods are necessary. An important example of this was
McMillan’s calculation [1] of the condensate fraction in zero temperature superfluid He4. I will only give the
briefest outline here to show where the Monte Carlo comes in, and refer you to the original for the algebraic
details.

For noninteracting Bosons the ground state wavefunction is simply a constant. To take into account the
interactions McMillan used the trial wavefunction consisting of a product of functions of the pair separations
known as aJastrow wavefunction

9(r1, r2, . . . rN) =
∏
i<j

f (rij ) with f (r) = exp[−u(r)] and u(r) =
(r0
r

)p
. (1)

The functionf is to take into account the pair correlations introduced by the interactions (particularly the
hard core of the atoms). The symbol

∏
i<j is the product over all pairs, counted once. The product can be

organized as
∏
j=1,N;i=1,j , hence the notation. The constantsr0 andp are to be optimized by minimizing the

ground state energy

E0 ≤
∫
9H9 d3Nr∫
92 d3Nr

=
∫ ∑

i<j

[
h̄2

2m∇2
i u(rij )+ V (rij )

]
92 d3Nr∫

92 d3Nr
(2)

with u(rij ) the pair potential. Note that9 is symmetric in the particle coordinates as required for a Bose
wavefunction, and is real. Deriving the second form of the energy expression requires a few lines of algebra
(see the original paper if you have trouble with this). Since

92 = exp

−∑
i<j

2u(rij )

 (3)

this looks like the the Boltzmann average with respect to aclassical effective HamiltonianβHeff =∑
i<j 2u(rij ), so that the result can be evaluated by Monte Carlo methods.
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The condensate density is given as

n0 = lim
r→∞N

∫
9(r1, r2, . . . rN)9(r1+ r , r2, . . . rN) d3r2 . . . d

3rN∫
92 d3Nr

(4)

= n lim
r→∞

〈∏
j>1

f (
∣∣r1j + r

∣∣)
f (r1j )

〉
' n

〈∏
j>1

f (r1j )

〉 〈∏
j>1

1

f (r1j )

〉
(5)

wheren is the densityN/� and the angular bracket denotes the average with respect to92, which again
is evaluated by Monte Carlo methods. (The last expression arises since forr → ∞ the average should
factorize.)

McMillan found n0/n ' 0.11 using systems ofN = 32 andN = 108 particles in periodic boundary
conditions. The limitation to averysmall number of particles is because the calculation involvesN dimen-
sional integrals. Clearly such a small number of particles is not sufficient to show the condensate exists—note
the expression requires takingr →∞. Howeverif we believe the condensate exists from other arguments,
the McMillan calculation provides an estimate of the fraction of particles involved. This estimate of about
10% has survived more modern calculations and also experiment, although experiment too involves many
difficulties in implementation and interpretation, so that the results are not completely reliable.

Path Integral or the Trotter Method

The method of the previous section suffers the limitation of all variational methods—the accuracy of the
answer is limited by the ingenuity of the trial wavefunction. The methods of the present section are in
principle exact, i.e. the accuracy is limited by discretization and statistical errors, that can be reduced by
using more powerful computers and longer runs.

The general expression needed to calculate finite temperature quantum averages is the matrix

ρ̄αα′ =
〈
α
∣∣e−βH ∣∣α′〉 (6)

with |α〉 some convenient choice of a complete set of states with a simple representation (e.g. given by
defining eachz-spin to be up or down in a spin-1

2 system, or position coordinates of each particle in a many
particle system). The density matrix isρ̄/Trρ̄ and the partition function isZ = Trρ̄ =∑α

〈
α
∣∣e−βH ∣∣α〉. It

is convenient to think ofe−βH as the evolution in imaginary time.
Equation (6) is a nice formal expression, but we cannot evaluate the expression exactly because we cannot

actually form the exponential of an operator, and we cannot list all the states for a large system. The trick to
calculateρ̄ is to write this evolution as the sum of small steps

e−βH = (e−τH )n with τ = β/n (7)

with n large so thatτ is small, and then using completeness 1=∑β |β〉 〈β| to give

ρ̄αα′ =
∑

β,γ,δ,...

〈
α
∣∣e−τH ∣∣β〉 〈β ∣∣e−τH ∣∣ γ 〉 〈γ ∣∣e−τH ∣∣ δ〉 . . . 〈· · · ∣∣e−τH ∣∣α′〉 . (8)

Smallτ corresponds to a large effective temperature, so that in the matrix elements
〈
β
∣∣e−τH ∣∣ γ 〉 etc. quantum

effects will be weak. In particular ifH is the sum of two noncommuting partsH = H1+H2 then

e−τH ' e−τH1e−τH2 (9)
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since the corrections from the commutator [H1, H2] is O(τ 2). Then also introducing the completeness
relation between this product we have

ρ̄αα′ '
∑

β,β ′,γ,γ ′,δ,δ′,...

〈
α
∣∣e−τH1

∣∣β〉 〈β ∣∣e−τH2
∣∣β ′〉 〈β ′ ∣∣e−τH1

∣∣ γ 〉 . . . 〈· · · ∣∣e−τH2
∣∣α′〉 . (10)

Now if H1 andH2 separately consist of the sum ofcommutingterms, this converts the problem to one that
in many cases can be reformulated as an effectiveclassicalproblem in dimensiond + 1 (with d the space
dimension of the original problem) with theimaginary timeτ giving the extra dimension. Averages of an
operatorA are given by

〈A〉 T r(ρ̄A)
T r(ρ̄)

=
∑

α,α′,β,β ′,γ,γ ′,δ,δ′,...
〈
α
∣∣e−τH1

∣∣β〉 〈β ∣∣e−τH2
∣∣β ′〉 〈β ′ ∣∣e−τH1

∣∣ γ 〉 . . . 〈· · · ∣∣e−τH2
∣∣α′〉 〈α′ |A|α〉∑

α,α′,β,β ′,γ,γ ′,δ,δ′,...
〈
α
∣∣e−τH1

∣∣β〉 〈β ∣∣e−τH2
∣∣β ′〉 〈β ′ ∣∣e−τH1

∣∣ γ 〉 . . . 〈· · · ∣∣e−τH2
∣∣α′〉 〈α′|α〉 ,

(11)
which is the ratio of two averages weighted byρ̄αα′ . The method is to samplēραα′ , Eq. (10) through Monte
Carlo methods on its classical equivalent. This should become clearer by considering a couple of examples.

Quantum Spins

Im
ag

in
ar

y
T

im
e

H1

H2

H1

H2

τ

1+τJ 1-τJ 2τJ

2τJ 1-τJ 1+τJ

Figure 1: Shaded squares show interactions in the classical effective HamiltonianHcl. There is a spin at each
solid dot, and space runs horizontally and imaginary time vertically. At successive imaginary time steps the
interaction is between alternate spin pairs. The interaction squares with nonzero statistical weighte−Hcl and
the value of this weight (given by the matrix elements of the quantum Hamiltonian) are shown below.

Consider for simplicity the one dimensional nearest neighbor spin-1
2 Heisenberg model with Hamiltonian

H = −J
∑
i

Eσi · Eσi+1 = −J
∑
i

(σ zi σ
z
i+1+ 2σ+i σ

−
i+1+ 2σ−i σ

+
i+1) (12)

with Eσ the Pauli spin matrices, andσ± = 1
2(σx ± iσy) the spin raising and lowering operators (σ+ |↓〉 = |↑〉,

etc.). The complete set of states|α〉 can be chosen as the product states given by the spin on each site being
up↑ or down↓. We writeH as the sum over odd (H1) and even (H2) terms

H = −J
∑
i odd

Eσi · Eσi+1− J
∑
i even

Eσi · Eσi+1. (13)
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Each sum consists of commuting terms (H1 = −J (Eσ1 · Eσ2+ Eσ3 · Eσ4+· · · ) etc.) that can be treated separately.
Thus

〈
α
∣∣e−τH1

∣∣β〉 is the product of pairwise terms involving the matrix elements of (expand the exponential
for smallτ )

exp(τJ Eσ1 · Eσ2) '


1+ τJ 0 0 0

0 1− τJ 2τJ 0
0 2τJ 1− τJ 0
0 0 0 1+ τJ

 (14)

with respect to the basis statess1s2 = ↑↑,↑↓,↓↑,↓↓. The contribution to Eq. (11) of a pair of spins over
some imaginary time intervalτ is interpreted as the Boltzmann factore−Hcl for the plaquette given by the
two spins in ad+1 dimensional classical system at fictitious temperature 1 and with HamiltonianHcl where
Hcl(s1, s2, s

′
1, s
′
2) depends on the spin configurations at the beginning and the end of the time interval and is

given by the corresponding matrix element of Eq. (14)

exp
[−Hcl(s1, s2, s ′1, s ′2)] = [exp(τJ Eσ1 · Eσ2)

]
s1s2,s

′
1s
′
2
. (15)

For example,Hcl(↑↓↓↑) = − ln(2τJ ). This gives us thequantumproperties in terms of an effective classical
problem in 1+ 1 dimension, for example

Z = Trρ̄ =
∑
states{si,n}

e−Hcl({si,n}) (16)

(see Fig.1). The distributione−Hcl({si,n}) is sampled by standard Monte Carlo methods.
Notice that the success of the method requires the matrix elements in Eq. (14) to be positive or zero,

since they become the statistical weights of the classical problem. Thus not all quantum spin problems can
be treated in this way. In fact the antiferromagnet would give negative weights for the off-diagonal elements,
and so the method would apparently break down1.

The expansions in smallτ introduce errors into the method: these can be systematically reduced by
increasingn (and the size of the computer!). There will also be statistical errors that can be reduced by
sampling more configurations.

Interacting Particles

(See Ceperley and Pollock [2] for more details.) Here we use|α〉 → |Ex〉 whereEx = Ex1, Ex2, . . . ExN is the
vector representing the position of theN particles, and

ρ̄(Ex, Ex ′;β) = 〈Ex ∣∣e−βH ∣∣ Ex ′〉 . (17)

The Trotter decomposition tells us to look atρ̄(Ex, Ex ′; τ) = 〈Ex ∣∣e−τH ∣∣ Ex ′〉 ' 〈Ex ∣∣e−τH1e−τH2
∣∣ Ex ′〉 with τ = β/n

small, and we splitH = H1+H2 with H1 the kinetic energy, andH2 the potential energy, and consider the
smallτ evolution underH1 andH2 separately.

The HamiltonianH1 is just that of free particles, and the imaginary time evolution is given by the modified
Schrodinger equation

− ∂

∂τ
ρ̄(Ex, Ex ′; τ) = − h̄

2

2m
∇2ρ̄(Ex, Ex ′; τ) (18)

1In fact on a bipartite lattice such as a simple cubic lattice a simple transformation in which the spins are rotated throughπ about
the x-axis on one of the component lattices can be used: in the new basis the matrix elements are all positive. However for other
lattices, such as a triangular lattice, this cannot be done.
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with ∇2 theN -particle Laplacian. This is just thediffusionequation, with solution

ρ̄(Ex, Ex ′; τ) =
(

m

2πh̄2τ

)3N/2

exp

[
− m

2h̄2τ
(Ex − Ex ′)2

]
. (19)

The potential term (evolution underH2) gives

ρ̄(Ex, Ex ′; τ) = 〈Ex ∣∣e−τV ∣∣ Ex ′〉 = e−τV (Ex)δ(Ex − Ex ′). (20)

Note that at smallτ the evolution underH1 gives nonzero only forEx close toEx ′. This means it does not
matter which order we writeH1 andH2in the splitting ofH , the basic idea of splitting the evolution into
smallτ steps.

Figure 2: Classical system giving Trρ̄(Ex, Ex;β) for 3 quantum particles usingn = 5. The dashed and dotted
lines signify the interactionV ({Ex(i)}) depending on the position of the particles at “times”τ and 2τ (other
interactions not shown).

Now we have

ρ̄(Ex, Ex ′;β) = consts
∫
. . .

∫
d3Nx(1)d3Nx(2) . . . d3Nx(n−1)

× exp

(
− m

2h̄2τ
(Ex(1) − Ex)2

)
exp

(−τV (Ex(1)))exp

(
− m

2h̄2τ
(Ex(2) − Ex(1))2

)
exp

(−τV (Ex(2)))
× · · ·exp

(
− m

2h̄2τ
(Ex ′ − Ex(n−1))2

)
exp

(−τV (Ex ′)) . (21)

We can again interpret this as the partition function of a classical system:N chains ofn springs of spring
constantm/h̄2τ 2 with a potentialV (Ex(j)) tethered between the end pointsEx andEx ′ at temperatureτ .

For TrEρ(Ex, Ex;β) the final positionEx ′ = Ex and we integrate over allEx as well. This example is sketched
in Fig. 2 for 3 quantum particles using aβ-splitting ofn = 5. Equation (21) is a discrete version of thepath
integral formulation of the statistical mechanics of interacting many body systems.
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