Physics 127c: Statistical Mechanics

Monte Carlo Methods

Monte Carlo Integration

Monte Carlo is most basically a way of doing integrals or sums.
Consider first a one dimensional integral

1
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where we have added the suggestiveneaning the average over a uniform distribution: af the interval
0 < x < 1. We will evaluate the integral on a computer as the discrete sum

1 M
Iwﬁgﬂm.

We can imagine two simple methods:

Method 1: take equally spaced with separatiorh = 1/M;

Method2: generateV randomyx; from a uniform distribution.

In the latter case sincg(x;) is a random variable, the central limit theorem tells us fhigta Gaussian

random variable for largéf with variance L
of = o7
so that the error i goes down as/l/M and is smaller if the varianoef of f is smaller.

For a one dimensional integration the Monte Carlo method is not compelling. However congdider a
dimensional integral evaluated witif points. For a uniform mesh each dimension of the integral gété
points, so that the separationvis= M~Y?. The error in the integration over oné cube is of ordeh?+?,
since we are approximating the surface by a linear interpolation (a plane) with(/s error. The total
error in the integral isMh¢+2 = M—2%/, The error in the Monte Carlo method remaiMs /2, so that this
method wins fod > 4.

We can reduce the error ihby reducing the effective ;. This is done by concentrating the sampling

where f (x) is large, using a weight functiom(x) (i.e. w(x) > 0, folw(x) =1)
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where in the last sum wgenerate the:; with distributionw (x)—known asmportance samplingHow do
we generate the;? We can try by introducing the auxiliary variablalefined by

d
L =w@, yx=0=0
dx
and theny(x = 1) = 1 follows by integrating. From this fing(y). Now generate a set gf with uniform
distribution P(y) = 1. Then since )
P(y)dy = P(x)dx



the setr; = x(y;) are distributed withw(x).

Unfortunately this simple scheme is not always possible, e.g. for the common case of a Gagssian
exp[-x2/202]. In this particular case a cute trick can be used, which is worth mentioning since Gaussian
distributions are so common. Generate a 2d distribuf@n;, xp) o exp[—(x? + x3)/20%]. In polar
coordinates this becomes

P(r,0)drdo o e /%" r dr do
or with u = r?/2¢2
P(u,0) x e “dudb.
Nowdy/du = e~ can be solved to give = — In[(1 — y)]. So if we generate; with a uniform distribution
on the interval [01] and evaluate; = o/—21In(1 — y;), andd; with a uniform distribution on the interval

[0, 2], the variablesc; = r cosf andx, = r sind have a Gaussian distributions (and both numbers can be
used to generate two successive entries in the list)of

Monte Carlo in Classical Statistical Mechanics

Classical statistical mechanics is just a very big sum! For example, canonical averages are

(A) — Zstatese_f:HA .
D states?

We cannot enumeratal the states (e.g. *2states for an Ising spin system) for aNylarge enough to be
interesting. Monte Carlo methods instead generate a subset of microstaiiéis probability distribution
P(X;), and estimate averages
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(For concreteness, think 8f as being a particular configuration 8fspins in the Ising model, for example.)
It is natural to choose (X)) to be P, (X)) = Z te ##0 so that

(A) =

1 M
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But how do we generate thg?

In the Metropolis methodhe x; are generated as a Markov process, with generated fronx; via a
suitably chosen transition probability (x; — x;11). A sufficient condition to guarantee th&f, will be
maintained by this process is to impose gnmciple of detailed balancas a constraint on th& for every
pair of states:,, x,

Peq()_ér)W()_ér g fs) = Peq ()_C'S)W()_Es - )_ér)a

i.e. the condition that the equilibrium distribution ratio betw&erandx, is maintained by direct transitions
between these states. Note that it is not necessary to impose this condition: other constraints can be found
involving transitions to other states that will maintafy),. Note also that we are saying nothing about how
the physical system maintai#,: this is a question of the dynamics of the system, which is not needed to
evaluate classical canonical averages.

A common algorithm is to choose

e PH ifSH >0

W(x’_’xf)o‘{ 1 if SH > 0



with §H = H(X,) — H(X,), then we have

> - ,—BSH > -
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with the final result independent of whethid is positive or negative.

We also must show that thé . .. does indeed converge to the distributiBgy. To do this consider an
ensemble of the Markoff process or chains (i.e. many repetitions of the Monte Carlo scheme). Suppose at
a given step there am, chains in the state and N, chains in the state whereH (x,) < H(x;). We have
some way of generating transitions betweemds. If we firstignoreSH = H (X,) — H(X,), the rates — s
ands — r must be equal (call thi’ @ = W©). Then

W()_C)r - )_és) = Wr(?)e_ﬂaH’
Wi — %) = wo.
The number of transition at this step is

Nr—)s = NrWr(_?)eiﬁlSHy
N€—>r = Ns W(O)
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so that the net number of transition is
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Clearly this expression is zero for the equilibrium distribution, and also we see tNgt M. is too small
the sign is such that the ratioiiscreasegand vice versa.

A simple example will clarify the discussion. Consider the Ising model with nearest neighbor interactions
H= —%J Zi,a s;8;+5. The Monte Carlo procedure is:

Step 1: Flip a single, randomly chosen spin (8¢% = W9). Call this spini.

Step 2: Calculates H = —17 327, 5,15(£2) with the+ sign if theith spin is flipped up, and the sign if
the spin is flipped down.

Step 3: Keep the new configuration according to the Metropolis algorithm, i.é Hif< 0 keep the new
state, whereas ifH > 0, draw a random numberuniformly distributed on [01] and keep the new
state ifz < e #*H | otherwise keep the old state.

This process generates a sequence of states that can be used (after a number of iterations to allow
convergence to the estimate Bf,) to calculate canonical averages. Alternatively to step 1, we could sweep
through the lattice systematically, flipping each spin in turn to be tested by the Metropolis algorithm.

A number of caveats should be considered:

1. Successive configurations will not be statistically independent. This is no problem calculating the
mean (each iteration is an unbiased sample) but the error in the estimateyigen byo/+/ N, with
o2 the measured variance ang the number of samples.

2. The random number generator better be good—there are unfortunate examples in the literature where
incorrect answers were generated because the “random” numbers in fact had subtle correlations.



3. The single spin updates become very inefficient at low temperatures if low energy transitions that
involve many (correlated) spin flips are important, such as the cluster flips we found in the 1d Ising
model, or long wavelength spin-wave type distortions in other models. This is bec#liSefor a
single spin flip will almost always be very small, so that the “dynamics” freezes. A more sophisticated
way of generating possible updates is needed.

4. Feasible system sizes are limited in practice. Even with modern computets<«altd x 107 would
be considered large, and finite size corrections may be quite important—note that 5% of the particles
are on a surface in this system offipins!

Further Reading

A good reference for this section is chapter 8CGafmputational Physicby S. Koonin. A more advanced
reference idMonte Carlo Simulation in Statistical Physilbg Binder and Heerman. There are numerous Java
implementations of the Metropolis algorithm on the 2d Ising model on the internet—do a Google search.
Two examples are
http://threeplusone.com/code/ising.html
http://stp.clarku.edu/simulations/ising2d/


http://threeplusone.com/code/ising.html
http://stp.clarku.edu/simulations/ising2d/
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