
Physics 127c: Statistical Mechanics

Superconductivity: Ginzburg-Landau Theory

Some of the key ideas for the Landau mean field description of phase transitions were developed in the
context of superconductivity. It turns out that for conventional (low-Tc) superconductors, mean field theory
is an accurate description because fluctuations are tiny exceptveryclose to the transition temperature. This
is not the case for high Tc superconductors.

Free Energy Expansion

For a complex order parameter9 the Landau expansion of the free energy for small|9| would be

F =
∫ [

α(T ) |9|2+ 1

2
β(T ) |9|4+ γ (T ) |∇9|2

]
d3x (1)

For a charged superfluid we must add the coupling to the vector potential and also the magnetic energy, so
that the full expression for a pair-superconductor is

F =
∫ [

α(T ) |9|2+ 1

2
β(T ) |9|4+ γ (T )

∣∣∣∣(∇ + 2ie

h̄c
A
)
9

∣∣∣∣2+ B2

8π

]
d3x. (2)

Near the transition temperatureTc we can writeα(T )→ a(T−Tc),β → b, and takea, b, γ to be independent
of T . The free energyF must be minimized with respect to variations of9 andA.

Minimizing with respect toA gives

δF

δA
= 0= −2eγ

h̄c
i

[
9∗

(
∇ + 2ie

h̄c
A
)
9 −9

(
∇ − 2ie

h̄c
A
)
9∗
]
+ 1

4π
∇ × (∇ × A) (3)

or
∇ × B = (4π/c)j (4)

with

j = −4e

h̄
γ |9|2

(
∇φ + 2e

h̄c
A
)
. (5)

These expressions give the London penetration depth

λ−2 = 32π

(
e2

h̄2c2

)
γ |9|2 . (6)

By comparison with the last lecture, we see

γ |9|2 = ns h̄
2

8m
. (7)

Again only this product of parameters has real significance, but often the choice is made

|9|2 = 1

2
ns, γ = h̄2

4m
, (8)

and then

j = −eh̄
m
|9|2

(
∇φ + 2e

h̄c
A
)
. (9)
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These results show that nearTc the superfluid density varies asns ∝ (1− T/Tc).
Minimizing with respect to9 (or actually9∗) gives

δF

δ9∗
= 0= α(T )9 + β(T ) |9|29 − γ (T )

(
∇ + 2ie

h̄c
A
)2

9. (10)

Using the convention (8) this can be written in a form that makes an analogy to the Schrodinger equation for
particles of mass 2m apparent

1

4m

(
−ih̄∇ + 2e

c
A
)2

9 + α(T )9 + β(T ) |9|29 = 0, (11)

although this is a convenience for solving the equation, rather than anything deep, and purists don’t like it
becausens is a stiffness constant and it is more natural to normalize the order parameter in terms of the
strength of long range correlations, such as we did in the last lecture.

Near the transition temperature Eq. (10) becomes

−a(Tc − T )9 + b |9|29 − γ
(
∇ + 2ie

h̄c
A
)2

9 = 0 (12)

Correlation Length

The solution to Eq. (12) for the uniform state is

|9|2 = a(Tc − T )/b (13)

giving the usual square root growth of the order parameter forT < Tc found in mean field theories. The
corresponding free energy density forT < Tc is

f = F

V
= −a

2(Tc − T )2
2b

, (14)

giving the jump in the specific heat atTc by two differentiations with respect to temperature. From our
calculation of the zero temperature energy we would guess

F(T ' Tc) ∼ −N (kBTc)
2

εF

(
1− T

Tc

)2

(15)

so that
a2

b
∼ nk2

B

εF
. (16)

For spatial variations of the order parameter Eq. (12) yields the length scaleξ given by

ξ2 = γ

α
= γ

a
(Tc − T )−1, (17)

or ξ = ξ0(1−T/Tc)−1/2 with the temperature independent length scaleξ0 = γ /aTc. On the other hand from
Eq. (7) we estimate (supposingns(T → 0) ∼ n)

γ
a

b
Tc ∼ n h̄

2

2m
, (18)

2



so that

ξ2
0 ∼

h̄2

2mεF

(
εF

kBTc

)2

. (19)

The correlation length is a therefore a factor ofεF /kBTc larger than
(
h̄2/2mεF

)1/2
which is of order the

interparticle spacing. This can be traced to the fact that the stiffness constant is determined by the total
density of electrons, whereas the energy coefficientsa, b are given by the fraction of particles corresponding
to the energy band of width aboutkBTc around the Fermi surface that is affected by the pairing.

The Ginzburg criterion for the temperatureTG nearTc when fluctuations become important can be
estimated asf ξ3 ∼ kBTc. With the above results this is estimated as 1− TG/Tc = tG given by

n (kBTc)
2

εF
t
1/2
G

[
h̄2

2mεF

(
εF

kBTc

)2
]3/2

∼ kBTc (20)

i.e. tG ∼ (kBTc/εF )4. This isverysmall for conventional (not high-Tc) superconductors, so that fluctuation
corrections and the critical region nearTc are usually immeasurable.

Behavior in a Magnetic Field

Dimensionless Equations

In a constant imposed magnetic fieldH (i.e. the field due to external current sources) the appropriate free
energy to minimize is

GH = F − B(x) · H/4π. (21)

In the normal stateB(x) = H, whereas in the bulk superconducting stateB = 0. Thus the simplest idea
would be that superconductivity is killed at athermodynamic critical fieldHc given by

H 2
c

8π
= α2

2β
. (22)

For fields larger than this the system becomes normal. This would be disappointing, since for typical
superconductors this critical field would be only a few hundred gauss even at low temperatures. Luckily,
the behavior in a field is more complicated than this, and in some materials superconductivity persists up to
much higher fields, a vital result for the technological applications that are common today. Abrikosov was
awarded the Nobel Prize in Physics in 2003 for his understanding of this physics.

To proceed it is useful to simplify the Ginzburg-Landau equation by introducing dimensionless units:
Measure lengths in units of the London penetration depthλ, magnetic fields in units of

√
2Hc, the order

parameter in units of|α| /β, and the energy density in units ofH 2
c /4π , i.e. define

x′ = x/λ, (23)

A′ = A/
√

2Hcλ, (24)

B′ = B/
√

2Hc, (25)

f ′ = 4πf/H 2
c , (26)

9 ′ = 9/(|α| /β), (27)

etc. Then (dropping the primes) the free energy density is

f = − |9|2+ 1

2
|9|4+ ∣∣(−iκ−1∇ + A

)
9
∣∣2+ B2 (28)
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with

κ = λ

ξ
= 1

4

(
h̄c

eγ

)(
β

2π

)1/2

. (29)

Althoughλ andξ both depend strongly on temperature, this mainly cancels out in the ratio, andκ is roughly
temperature independent. It is the key parameter in determining the nature of the behavior in a magnetic field.
Sinceλ andξ derive from quite different physics,κ varies from small to large values in different materials.

In the dimensionless units the Ginzburg-Landau equation is(−iκ−1∇ + A
)2
9 −9 + |9|29 = 0, (30)

and the current current equation is

∇ × B = 1

2

[
9∗

(−iκ−1∇ + A
)
9 −9 (iκ−1∇ + A

)
9∗
]
. (31)

The flux quantization condition in the scaled units is given by identifying the current from Eq. (31)

j ∝ |9|2 (κ−1∇φ + A) (32)

so that in the bulk of a superconductor wherej = 0∫
B · dS= ∮A · dl = integer× 2πκ−1. (33)

Thus the flux quantum is 2πκ−1 in the scaled units.

Surface Energy

If we set the external field to the thermodynamic critical fieldHc the normal and superfluid states have the
same free energy and can be in contact, and the question of the surface energy between them can be addressed.
We choose the direction normal to the surface to bez andA = A(z)x̂, B = B(z)ŷ the governing equations
are

−κ−2d
29

dz2
+9 − |9|29 + A29 = 0, (34a)

d2A

dz2
− |9|2A = 0. (34b)

where it is consistent to assume onlyz dependence and no phase variation. The surface free energy is the
difference ofGH from the value with all superconductor or normal state. In the scaled units and atH = Hc
this is

6 =
∫ ∞
−∞

dz

[
− |9|2+ 1

2
|9|4+

∣∣∣∣(−iκ−1 d

dz
+A

)
9

∣∣∣∣2+ (B − 1√
2

)2
]
. (35)

If Eq. (34a) is multiplied by9∗, integrated overz, and then we integrate by parts,6 can be simplified to

6 =
∫ ∞
−∞

dz

[
−1

2
|9|4+

(
B − 1√

2

)2
]
. (36)

Note that the integrand is zero in the superconductor (9 = 1, B = 0) and the normal state (9 = 0, B =
1/
√

2). Thus6 gets contributions just from the interface region, as makes sense. Equations (34a-34b) must
be solved numerically, but we can deduce the main results without a full solution. Forκ large,ξ � λ, the
the field penetrates a large distance into the superconductor compared to the thickness of the interface. Thus
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in the interface region the integrand in Eq. (36) is negative, and the surface energy isnegative. On the other
hand for smallκ, λ� ξ , the field cannot penetrate even the small9 region before the superconducting state
is established, the integrand is positive in the interface region, and so the surface tension isnegative. The
dividing value ofκ is given by6 = 0, which means|9(z)|2 = √2(B(z)− 1/

√
2). It can be shown that this

satisfies Eq. (34a) for κ = 1/
√

2. This divides superconductors into two classes:

Type I: κ < 1/
√

2: positive surface tension

Type II: κ > 1/
√

2: negative surface tension

For type I superconductors the thermodynamic critical fieldHc does indeed give the boundary between
superconducting and normal states. For type II superconductors however the negative surface energy favors
amixed stateof regions of normal and superconductor intermixed on length scales of orderξ or λ for fields
Hc1 < H < Hc where the negative surface energy favors the invasion of normal regions with magnetic field
into the superconductor, and forHc < H < Hc2 where the negative surface energy further stabilizes the
superconducting state.

Lower Critical Field

The lower critical fieldHc1 for a type II superconductor occurs when the energy for a single quantized flux
line or vortex becomes negative. There is a positive contribution to the energy density from the phase gradient
∇φ ∼ r−1 at a distancer from the vortex core. From Eq. (28) this gives an energy density per unit length of
line of orderκ−2r−2 in the scaled units (taking|9| ∼ 1), over distances fromξ to λ the London penetration
depth. The integral gives the energy cost

1G+ ∼ κ−2 ln(κ). (37)

In addition there is a negative contribution from the single quantum of flux in the magnetic fieldHc1. This
decrease in magnetic energy (flux× external field) per length of line is of order

1G− ∼ κ−1Hc1. (38)

This the lower critical field is of order
Hc1 ∼ κ−1 ln κ. (39)

The calculation can be done essentially exactly for largeκ when the local London equation can be used, and
the result is actuallyHc1 = (2κ−1)(lnCκ) with C a number of order unity. NearHc1 the density of vortices
d−2 is determined by balancing the repulsive energy of the interacting vortices against the magnetic energy
gained. Since the interaction is exponential in the separation∼ e−d , whereas the magnetic energy gained per
vortex is proportional to(H − Hc1) there is a rapid increase in the density of vortices∼ [ln(H −Hc1)]−2.
The average magnetic fieldB scales in the same way. We would expect the repulsive interaction to lead to a
lattice structure, perhaps a close packed triangular lattice.

Intermediate Fields

As the external field is increased, the density of vortices increases, and the average magnetic field over the
superconductor grows, initially rapidly since the flux lines interact weakly. When the separationd becomes
comparable with the penetration depthλ the supercurrent and field regions begin to extend over the whole
superconductor, the flux lines interact more strongly, and the growth ofB with H is slower. Whend ∼ ξ
the normal cores of the flux lines overlap, and the state becomes normal. In scaled units this isd ∼ κ−1 and
the magnetic field is one flux quantum perd2 or of orderκ−1/κ−2 ∼ κ. In the normal stateB = H so this
gives us the estimate of the upper critical fieldHc2 = κ (i.e.

√
2κHc in unscaled units). We will see this is

actually the exact result.
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Upper Critical Field

At the upper critical field the vortex cores overlap suppressing the order parameter close to zero. This means
we can linearize Eq. (30) in 9 to give (−iκ−1∇ + A

)2
9 −9 = 0 (40)

neglect the feedback of the supercurrents on the magnetic field so that for an applied fieldH ẑ we can take
A = Hxŷ and then [

−κ−2∇2− 2iκ−1Hx
∂

∂y
+H 2x2

]
9 = 9. (41)

This is the same as Schrodinger’s equation for particles in a constant magnetic field, giving Landau levels.
Note that although the physical problem is symmetric inx → y, by choice of gauge we have formulated the
problem in a way that does not respect this symmetry. This is also what is usually done for the Landau level
problem. Assuming az-independent solution, we can write

9 = eikyyu(x), (42)

with u(x) satisfying
−u′′ + (Hκx − ky)2u = κ2u. (43)

This is the same as Schrodinger’s equation for a harmonic oscillator aboutx0 = ky/κH and there are bounded
solutions for

κ = (2n+ 1)H. (44)

The largest critical field corresponds ton = 1 giving

Hc2 = κ. (45)

The corresponding eigenfunction is
9 = eikyye−κ2(x−κ−2ky)

2/2. (46)

If we suppose a periodic solution in they direction with periodLy then the physical solution can be any
linear combination of the solutions withky = n× 2π/Ly

9 =
∑
n

Cne
i(2nπ/Ly)ye−κ

2[x−κ−2(2nπ/Ly)]2
/2. (47)

First consider the caseCn = C. Then increasingx by κ−2(2π/Ly) simply corresponds to a phase change of
9 by 2πy/Ly so that|9|2 is periodic inx with periodLx satisfying

LxLy = 2πκ−2 (48)

The individual values ofLx andLy (and the competition with other solutions with different choices ofCn)
is not given by this linear calculation. Keeping the lowest order nonlinear terms in|9|2, in both Eqs. (30)
and (31) is quite involved, and is the subject of Abrikosov’s original paper. Not surprisingly, for the case of
Cn = C the free energy is minimized forLx = Ly which actually gives a structure with square symmetry
(not immediately obvious, since our the representation of thex andy dependence is quite different). The
structure consists of a square lattice of points where|9| goes to zero, about which the phase winds by 2π—
the structure of a rudimentary lattice of vortices. Actually it turns out that the lowest free energy solution is
for a two parameter solutionC2n = C0, C2n+1 = C1 with C1 = iC0 and a ratio ofLx/Ly which turns out to
correspond to atriangular lattice. (In Abrikosov’s first paper, he made a numerical error in the evaluation of
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the energy of this state, and erroneously suggested that the square lattice was the stable one.) Since the same
structure is expected in the dilute flux line limit nearHc1 this flux lattice structure is expected over the whole
range of fieldsHc1 < H < Hc2. The lattice structure is dramatically confirmed by experiments where the
points of large field on the surface where flux lines emerge are decorated with small magnetic particles.

The flux-lattice structure in type II superconductors is enormously important in technological applications,
allowing fields enhanced by the factorκ to be sustained. Unlike the case of superfluids, where vortex lines
are immediately mobile and dissipative, flux lines are typically pinned to impurities in the lattice (κ tends
to be large in “dirty superconductors”). In high-Tc superconductors the thermal fluctuations of the flux lines
becomes important, and indeed the superconducting transition in a magnetic field must be thought of as the
melting of the flux line lattice, since in a disordered flux-line state there is no long range phase order.

Further Reading

Abrikosov’s original paper is Soviet Physics JETP5, 1174 (1957). I’ve made a copy that you can findhere.
His Nobel Prize lecture at

http://www.nobel.se/physics/laureates/2003/abrikosov-lecture.html

is well worth listening to or reading. Probably the best review of type II superconductors is the theory article
by Fetter and Hohenberg, in Superconductivity, vol 2, edited by Parks (Caltech Library QC612.S8 P28). The
following article bySerindiscusses the experimental situation in 1969. A decoration experiment visualizing
the flux lattice in a high-Tc superconductor isGammel et al, Phys. Rev. Lett.59, 2592 (1987), available
online
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