Physics 127c: Statistical Mechanics

Superconductivity: Ginzburg-Landau Theory

Some of the key ideas for the Landau mean field description of phase transitions were developed in the
context of superconductivity. It turns out that for conventional (layySuperconductors, mean field theory

is an accurate description because fluctuations are tiny exegptlose to the transition temperature. This

is not the case for high lsuperconductors.

Free Energy Expansion

For a complex order parametérthe Landau expansion of the free energy for smi|lwould be

F=f[a(T)|w|2+%ﬂ(T)|w|4+y<T)|W|2] dx 1)

For a charged superfluid we must add the coupling to the vector potential and also the magnetic energy, so
that the full expression for a pair-superconductor is
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Near the transition temperatufewe can writex(7) — a(T —T,), 8 — b, and take, b, y to be independent

of T. The free energy’ must be minimized with respect to variationsbfandA.
Minimizing with respect tA gives
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These expressions give the London penetration depth
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By comparison with the last lecture, we see
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Again only this product of parameters has real significance, but often the choice is made
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These results show that nerthe superfluid density varies agsox (1 — T/T,).
Minimizing with respect tol (or actually¥*) gives
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Using the conventiorg) this can be written in a form that makes an analogy to the Schrodinger equation for
particles of mass/2 apparent
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although this is a convenience for solving the equation, rather than anything deep, and purists don't like it
becauses, is a stiffness constant and it is more natural to normalize the order parameter in terms of the
strength of long range correlations, such as we did in the last lecture.

Near the transition temperature E¢0( becomes
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Correlation Length

The solution to Eqg.12) for the uniform state is
W[?=a(T. = T)/b (13)

giving the usual square root growth of the order parametef'fer 7, found in mean field theories. The
corresponding free energy density br< T is
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giving the jump in the specific heat & by two differentiations with respect to temperature. From our
calculation of the zero temperature energy we would guess
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For spatial variations of the order parameter E®) {ields the length scalg given by

8=§=£m—n*, (17)

or& = &(1— T/ T.)~Y2 with the temperature independent length s€ale y /aT,. On the other hand from
Eq. (7) we estimate (supposing (T — 0) ~ n)
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The correlation length is a therefore a factoregf/ kg T, larger than(hZ/stF)l/2 which is of order the
interparticle spacing. This can be traced to the fact that the stiffness constant is determined by the total
density of electrons, whereas the energy coefficienksare given by the fraction of particles corresponding
to the energy band of width aboti 7. around the Fermi surface that is affected by the pairing.

The Ginzburg criterion for the temperatufe near 7. when fluctuations become important can be
estimated ag &3 ~ kzT,.. With the above results this is estimated as T;/ T. = t5 given by
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i.e. tg ~ (kgT./er)*. Thisisverysmall for conventional (not high<J superconductors, so that fluctuation
corrections and the critical region ne&rare usually immeasurable.

Behavior in a Magnetic Field
Dimensionless Equations

In a constant imposed magnetic figtid(i.e. the field due to external current sources) the appropriate free
energy to minimize is
Gy =F —B(X) -H/4r. (21)

In the normal stat®(x) = H, whereas in the bulk superconducting st&te- 0. Thus the simplest idea

would be that superconductivity is killed atl@ermodynamic critical field4, given by
H? o?
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For fields larger than this the system becomes normal. This would be disappointing, since for typical
superconductors this critical field would be only a few hundred gauss even at low temperatures. Luckily,
the behavior in a field is more complicated than this, and in some materials superconductivity persists up to
much higher fields, a vital result for the technological applications that are common today. Abrikosov was
awarded the Nobel Prize in Physics in 2003 for his understanding of this physics.

To proceed it is useful to simplify the Ginzburg-Landau equation by introducing dimensionless units:
Measure lengths in units of the London penetration deptimagnetic fields in units of/2H,, the order
parameter in units df| /8, and the energy density in units &f?/4x, i.e. define

X' = X/A, (23)
A = A/V2H A, (24)
B’ = B/+/2H., (25)
f'=4nf/H, (26)
v =v/(la|/B), (27)

etc. Then (dropping the primes) the free energy density is
1
f:_|\y|2+§|w|4+\(—iK*1v+A)w|2+BZ (28)
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Althoughi andé both depend strongly on temperature, this mainly cancels out in the ratie,iamdughly
temperature independent. Itis the key parameter in determining the nature of the behavior in a magnetic field.
Sincei andé derive from quite different physics, varies from small to large values in different materials.

In the dimensionless units the Ginzburg-Landau equation is

(—ik WV + AW — W 4 W2 =0, (30)
and the current current equation is
VxB= % [W* (=i 'V + A) W — W (ic 'V + A) U*]. (31)
The flux quantization condition in the scaled units is given by identifying the current fronBEq. (
j oW (Ve + A) (32)
so that in the bulk of a superconductor whiee 0
[B-dS= fA -dl = integerx 2wk t. (33)

Thus the flux quantum is/2~? in the scaled units.

Surface Energy

If we set the external field to the thermodynamic critical fieldthe normal and superfluid states have the

same free energy and can be in contact, and the question of the surface energy between them can be addressed.
We choose the direction normal to the surface talbadA = A(z)X, B = B(z)y the governing equations

are
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where it is consistent to assume onlgependence and no phase variation. The surface free energy is the
difference ofG y from the value with all superconductor or normal state. In the scaled units d@hd-aH.

this is
) /ood |\If|2+1|lD|4+‘( '—1d+A>w2+(B 1)2 (35)
= - = —lK T— - — .
o ¢ 2 dz J2

If Eq. (349 is multiplied byWw*, integrated ovet, and then we integrate by paris,can be simplified to
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Note that the integrand is zero in the superconducto={ 1, B = 0) and the normal statel(= 0, B =
1/+4/2). ThusX gets contributions just from the interface region, as makes sense. Equaterisip) must

be solved numerically, but we can deduce the main results without a full solution. Imge,&é <« A, the
the field penetrates a large distance into the superconductor compared to the thickness of the interface. Thus
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in the interface region the integrand in EG6) is negative, and the surface energnégative On the other
hand for smalk, A > &, the field cannot penetrate even the smategion before the superconducting state
is established, the integrand is positive in the interface region, and so the surface tensigatiise The
dividing value ofx is given byX = 0, which means$¥ (z)|°> = v2(B(z) — 1/+4/2). It can be shown that this
satisfies Eq.349 for « = 1/+/2. This divides superconductors into two classes:

Type I: « < 1/+/2: positive surface tension
Type Il: « > 1/+/2: negative surface tension

For type | superconductors the thermodynamic critical fidlddoes indeed give the boundary between
superconducting and normal states. For type Il superconductors however the negative surface energy favors
amixed statef regions of normal and superconductor intermixed on length scales ofpoter for fields
H.1 < H < H_. where the negative surface energy favors the invasion of normal regions with magnetic field
into the superconductor, and féf. < H < H., where the negative surface energy further stabilizes the
superconducting state.

Lower Critical Field

The lower critical fieldH,; for a type Il superconductor occurs when the energy for a single quantized flux
line or vortex becomes negative. There is a positive contribution to the energy density from the phase gradient
V¢ ~ r~1 at a distance from the vortex core. From Eq28) this gives an energy density per unit length of

line of orderx 22 in the scaled units (taking¥| ~ 1), over distances fromto A the London penetration

depth. The integral gives the energy cost

AG, ~ k2In(k). (37)

In addition there is a negative contribution from the single quantum of flux in the magnetidfigld his
decrease in magnetic energy (fluxexternal field) per length of line is of order

AG_ ~k'H.. (38)

This the lower critical field is of order
H.a ~k tInk. (39)

The calculation can be done essentially exactly for largdnen the local London equation can be used, and

the result is actuallyd.;, = (2« ~1)(In Cx) with C a number of order unity. Nedi,; the density of vortices

d~2 is determined by balancing the repulsive energy of the interacting vortices against the magnetic energy
gained. Since the interaction is exponential in the separatiert, whereas the magnetic energy gained per
vortex is proportional td H — H,1) there is a rapid increase in the density of vortisefin(H — H.1)] 2.

The average magnetic fieRl scales in the same way. We would expect the repulsive interaction to lead to a
lattice structure, perhaps a close packed triangular lattice.

Intermediate Fields

As the external field is increased, the density of vortices increases, and the average magnetic field over the
superconductor grows, initially rapidly since the flux lines interact weakly. When the sepafdtemomes
comparable with the penetration deptithe supercurrent and field regions begin to extend over the whole
superconductor, the flux lines interact more strongly, and the growthwith H is slower. Whenl ~ &

the normal cores of the flux lines overlap, and the state becomes normal. In scaled unité thisi$ and

the magnetic field is one flux quantum p&ror of orderk —1/k =2 ~ k. In the normal stat® = H so this

gives us the estimate of the upper critical fiélgh = « (i.e. v/2« H, in unscaled units). We will see this is
actually the exact result.



Upper Critical Field

At the upper critical field the vortex cores overlap suppressing the order parameter close to zero. This means
we can linearize Eq.30) in W to give

(—ik W+ AU - =0 (40)

neglect the feedback of the supercurrents on the magnetic field so that for an appliéfifigklcan take
A = HxY and then

d

[—szz — 2iK*1Hxa— + H2x2] U=, (41)

y
This is the same as Schrodinger’s equation for particles in a constant magnetic field, giving Landau levels.
Note that although the physical problem is symmetrie ir>- y, by choice of gauge we have formulated the
problem in a way that does not respect this symmetry. This is also what is usually done for the Landau level
problem. Assuming a-independent solution, we can write

v = eik«"yu(x), (42)

with u(x) satisfying
—u" + (Hix — ky)%u = «°u. (43)

This is the same as Schrodinger’s equation for a harmonic oscillator apeut, /« H and there are bounded
solutions for
k= (2n+ 1)H. (44)

The largest critical field correspondsito= 1 giving
ch =K. (45)

The corresponding eigenfunction is
W = ke P n P2, (46)

If we suppose a periodic solution in thedirection with periodL, then the physical solution can be any
linear combination of the solutions with =n x 27 /L,

v — Z Cnei(2n71/Ly)ye—f(z[x—/(_z(Znn/Ly)]2/2. (47)

n

First consider the casg, = C. Then increasing by « 2(27/L,) simply corresponds to a phase change of
W by 27y/L, so that|¥|? is periodic inx with periodL, satisfying

L,L, =2k (48)

The individual values oL, andL, (and the competition with other solutions with different choice€ pf

is not given by this linear calculation. Keeping the lowest order nonlinear termis|fnin both Eqgs. 80)

and (1) is quite involved, and is the subject of Abrikosov’s original paper. Not surprisingly, for the case of
C, = C the free energy is minimized fdt, = L, which actually gives a structure with square symmetry
(not immediately obvious, since our the representation ofcthad y dependence is quite different). The
structure consists of a square lattice of points whéregoes to zero, about which the phase winds hy-2

the structure of a rudimentary lattice of vortices. Actually it turns out that the lowest free energy solution is
for a two parameter solutiofiy, = Co, C2,+1 = C1 With C1 = iCo and a ratio ofL, /L, which turns out to
correspond to &iangular lattice. (In Abrikosov’s first paper, he made a numerical error in the evaluation of
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the energy of this state, and erroneously suggested that the square lattice was the stable one.) Since the same
structure is expected in the dilute flux line limit nddr, this flux lattice structure is expected over the whole
range of fieldsH., < H < H.,. The lattice structure is dramatically confirmed by experiments where the
points of large field on the surface where flux lines emerge are decorated with small magnetic particles.

The flux-lattice structure intype Il superconductors is enormously importantin technological applications,
allowing fields enhanced by the factoito be sustained. Unlike the case of superfluids, where vortex lines
are immediately mobile and dissipative, flux lines are typically pinned to impurities in the lattiemds
to be large in “dirty superconductors”). In high-Superconductors the thermal fluctuations of the flux lines
becomes important, and indeed the superconducting transition in a magnetic field must be thought of as the
melting of the flux line lattice, since in a disordered flux-line state there is no long range phase order.

Further Reading

Abrikosov’s original paper is Soviet Physics JEBPL174 (1957). I've made a copy that you can firete
His Nobel Prize lecture at

http://www.nobel.se/physics/laureates/2003/abrikosov-lecture.html

is well worth listening to or reading. Probably the best review of type Il superconductors is the theory article
by Fetter and Hohenberdn Superconductivityol 2, edited by Parks (Caltech Library QC612.S8 P28). The
following article bySerindiscusses the experimental situation in 1969. A decoration experiment visualizing
the flux lattice in a high-J superconductor i&ammel et gl Phys. Rev. Lett59, 2592 (1987), available
online


http://www.nobel.se/physics/laureates/2003/abrikosov-lecture.html
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