
Physics 127c: Statistical Mechanics

Superconductivity: Thermodynamics

We could continue to evaluate the finite temperature thermodynamics by enumerating the states by hand.
However it is more convenient to switch to the notation used inHomework 2. There you showed that the
Hamiltonian for the excited states can be reduced to

Heff = const+
∑
Ek
Ek(α

+
k αk + β+−kβ−k) (1)

with αk, βk independent Fermion operators related to the original operators by the canonical transformation

αEk = ukak↑ − vka+−k↓, (2)

β−Ek = uka−k↓ + vka+k↑,
and the inverse

aEk↑ = ukαk + vkβ+−k, (3)

a−Ek↓ = ukβ−k − vkα+k , (4)

with

uk =
√

1

2
(1+ εk

Ek
) (5)

vk =
√

1

2
(1− εk

Ek
) (6)

andEk =
√
ε2
k +12

k. The gap equation is

1k = − 1

V

∑
k ′
ũ(k, k ′)

〈
a−k ′↓ak ′↑

〉
. (7)

The averages of combinations of theak operators can be found from the result for the statistically independent
Fermion occupation numbers 〈

α+k αk ′
〉 = 〈β+k βk ′

〉 = f (Ek)δkk ′, (8)

whereas
0= 〈α+k βk ′

〉 = 〈α+k β+k ′ 〉 = . . .etc, (9)

with f (Ek) the Fermi function

f (Ek) = 1

eEk/kBT + 1
. (10)

For example 〈
a−k↓ak↑

〉 = 〈(ukβ−k − vkα+k
) (
ukαk + vkβ+−k

)〉
(11)

= ukvk
〈−α+k αk + β−kβ

+
−k

〉
, (12)

since these are the only nonzero averages. Thus〈
a−k↓ak↑

〉 = ukvk (− 2

eβEk + 1
+ 1

)
(13)

= 12
k

2Ek
tanh

(
1

2
βEk

)
. (14)

Other averages can be calculated similarly.
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Gap Equation

The gap equation at nonzero temperature is then

1k = − 1

V

∑
k ′
ũ(k, k ′)

〈
a−k ′↓ak ′↑

〉
, (15)

= − 1

V

∑
k ′
ũ(k, k ′)

1k′

2Ek′
tanh

(
1

2
βEk′

)
. (16)

For the separable potential

ũ(Ek − Ek′)→
{ −g for |k − kF |, |k′ − kF | < kc

0 otherwise
, (17)

the gap equation reduces to the equation for the temperature dependent energy gap1(T )

1= N(0)g
∫ h̄ωc

−h̄ωc

1

2E
tanh

(
1

2
βE

)
dξ, (18)

with E = √ξ2+12(T ).
The transition temperatureTc is when1→ 0, i.e.

1= N(0)g
∫ h̄ωc

−h̄ωc

1

2ξ
tanh

(
1

2
βcξ

)
dξ. (19)

Without the tanh the integral would depend logarithmically onh̄ωc and would diverge logarithmically from
theξ → 0 region. The tanh cuts off the divergence atξ ∼ kBTc so that the integral is about ln(h̄ωc/kBTc).
In the weak coupling limitkBTc � h̄ωc the integral can be evaluated precisely to give

kBTc ' 1.14h̄ωce
−1/N(0)g. (20)

The zero temperature gap and the transition temperature are related by

210

kBTc
' 3.52, (21)

a universal result in the weak coupling limit independent of the parameters and the cutoff frequencyh̄ωc.
In fact, although Eq. (18) for 1(T ) appears to depend on the cutoff, if we subtract Eq. (19) we get∫ ∞

−∞

[
1√

ξ2+12(T )
tanh

(
1

2
β
√
ξ2+12(T )

)
− 1

ξ
tanh

(
1

2
βcξ

)]
dξ = 0, (22)

where since the integrand now goes to zero forξ ≥ 1, kBTc the limits can be replaced by±∞. This is a
universal equation for1/kBTc as a function ofT/Tc. Although we have derived this for the special separable
potential, the result actually just depends on the weak coupling assumptionkBTc � h̄ωc. Thus Eq. (22)
gives a quantitative prediction for many experimental superconductors.
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Energetics

It is straightforward, although somewhat tedious, to calculate the free energyE − µN − T S. The kinetic
energy can be written as

〈Ekin − µN〉 =
∑

k

ξk

[〈
a+k↑ak↑

〉
+
〈
a+−k↓a−k↓

〉]
(23)

=
∑

k

ξk

[
1− ξk

Ek
tanh

(
1

2
βEk

)]
. (24)

The pairing energy is

〈
Epot

〉 = 1

V

∑
k,k ′

ũ(k, k ′)
〈
a+k ′↑a

+
−k ′↓

〉 〈
a−k↓ak↑

〉
(25)

= −
∑

k

12
k

2Ek
tanh

(
1

2
βEk

)
. (26)

Using the gap equation to simplify the double sum.
The entropy is−kB∑n pn lnpn for the two sets of noninteracting Fermionsαk andβk : for each there is

the one fermion state with probabilityf (Ek) and the no Fermion state with probability 1− f (Ek):

S = −2kB
∑

k

f (Ek) ln f (Ek)+ (1− f (Ek)) ln (1− f (Ek)) . (27)

At zero temperature the entropy term disappears and then

〈E − µN〉 =
∑

k

ξk

(
1− ξk

Ek

)
− 12

k

2Ek
. (28)

We are more interested in the difference in the energy from what it would be in the normal state, which is
given by the same expression with1k → 0, Ek → |ξk|. Thus

〈E − µN〉s − 〈E − µN〉n =
∑

k

[
|ξk| − ξ2

k

Ek
− 12

k

2Ek

]
(29)

= VN(0)
∫ h̄ωc

−h̄ωc

|ξ | − ξ2√
ξ2+12

0

− 12
0

2
√
ξ2+12

0

 dξ (30)

= −1

2
N(0)V12

0. (31)

SinceN(0) ∼ NεF/V the lowering of the energy is of orderN12
0/εF . This is smaller than the valueN1

we might have expected; this is because only a fraction of order1/εF of the Fermi sea is affected by the
pairing.

Order Parameter and Supercurrents

We would like some macroscopic order parameter that captures the new features of the BCS state, in particular
the nonzero values of

〈
ak↑a−k↓

〉
in the band of states around the Fermi surface.
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For the equilibrium state a convenient definition is

9 =
∑
band

〈
a−k↓ak↑

〉
(32)

=
∑
band

1k

2Ek
tanh(

1

2
βEk) (33)

= N(0)1
∫ h̄ωc

−h̄ωc

1

2E
tanh(

1

2
βE)dξ (34)

(where I have retained the phase factors and1 is now complex withE =
√
ξ2+ |1|2). Since the integral

is a number that does not vary much withT or1, and the normalization of the order parameter is arbitrary,
often the complex gap parameter1 is used as the order parameter.

Just as in a superfluid, a spatial gradient of the phase of the order parameter corresponds to a state with
mass flow, and, because the particles are charged, electric current. These currents are in an equilibrium state,
and so are supercurrents. The flowing state corresponds to pair condensation in a state with center of mass
momentumh̄q, i.e. the pair state is

8(r1.r2) = eiq(r 1+r2)/2φ(r1− r2)(↑↓ − ↓↑) (35)

=
∑

k

ei(k+q/2)·r1ei(−k+q/2)·r2χ(k)(↑↓ − ↓↑) (36)

so that now the statesk+q/2,↑ and−k+q/2,↓ are occupied or empty together in the BCS wave function.
The order parameter would be defined generally as

9(r ) =
∑

q

∑
band

〈
a−k+q/2,↓ak+q/2,↑

〉
eiq·r , (37)

and in the special case of uniform flow9 = |9| eiφ(r) with φ = q · r . In a translationally invariant system
and at zero temperature, the paired state is just a shift in momentum space byh̄q/2 of the ground state, and
so the total momentum isNh̄q/2. Thus we can write for the electric current density in terms of the phase of
the order parameter

j = −ns eh̄
2m
∇φ, (38)

with ns → n = N/V for a translationally invariant system atT = 0.
Equation (38) is not yet quite right. Physical quantities such as the electric current must begauge

invariant but the quantum mechanical phase is not: a change of the gauge of the electromagnetic vector
potentialA → A + ∇a(r ) with a any function leads to a change in the phase of the wave function or
annihilation operator of a particle of chargeQ byψ → ψeiQa/h̄c. Thus the current expression must take the
gauge invariant form

j = −ns eh̄
2m

(
∇φ + 2e

h̄c
A
)

(39)

where the factor of 2 multiplyinge is becauseφ is the phase of a pair wave function. (I am usinge as
a positive quantity, so that the electron charge is−e.) It is important to note that his factor of 2 is exact,
depending only on gauge invariance arguments. The factor outside the bracket only has significance as a
whole. For a translationally invariant system Galilean invariance shows that including the factor of 2m from
the pairing leads to the convenient result ofns → n at zero temperature. However, the presence of a lattice
for examle eliminates this argument, and then only the combinationns/2m is physically relevant so that the
precise assignment of a “mass” is irrelevant.
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Equation (39) is already enough to give us a key feature of the superconducting state: theMeissner effect.
A superconductor is a perfect diamagnet and will expel any magnetic field from its interior. Equation (39)
shows us that

∇ × j = −nse
2

mc
B, (40)

a result known as theLondon equation. Coupled with the Maxwell equations

∇ × B = 4π

c
j (41)

∇ · B = 0 (42)

this gives
∇2B = λ−2B, (43)

with λ theLondon penetration length

λ2 = mc2

4πnse2
= α2

4π

1

nsa0
, (44)

with α the fine structure constant anda0 the Bohr radius. The solutions to Eq. (43) are exponentially
decaying with the decay lengthλ, so in the bulk of a superconductorB, and therefore also the currentj ,
go to zero. Note that the Meissner effect is more than just perfect conductivity, which would imply that on
turning on a magnetic field in the superconducting state, eddy currents would stop the field from invading
the superconductor. The Meissner effect means that the field is actively expelled, e.g. on cooling throughTc
in a magnetic field.

B

Figure 1: Flux quantization

Equation (39) also leads to the important phenomenon of flux quantization. Consider a loop of super-
conductor through which a magnetic fieldB passes. Except for within a fewλ of the surfaces,B, j → 0
in the superconductor, e.g. along the dashed contour in Fig.1. Since the pair wave function must be single
valued ∮∇φ · dl = integer× 2π . (45)

Then Eq. (39) with j = 0 gives ∫
B · dS=∮A · dl = integer× hc

2e
(46)

so that the flux through a loop well within a superconductor is quantized in units of the flux quantum
hc/2e ' 2.07× 10−7gauss cm2. This provides a scheme for very precise measurements of magnetic fields,
currents, and other quantities.
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