Physics 127c: Statistical Mechanics

Superconductivity: Thermodynamics

We could continue to evaluate the finite temperature thermodynamics by enumerating the states by hand.
However it is more convenient to switch to the notation used@mework 2 There you showed that the
Hamiltonian for the excited states can be reduced to

H,py = const+- Z Ey (o o + BE Bi) (1)
k
with ay, Bk independent Fermion operators related to the original operators by the canonical transformation

Qp = Urdky — vkafki, (2)
By =ura_y, + vka;},

and the inverse

agy = upak + vy, (3
a_g, = Bk — vrey, 4)
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andE; = /2 + A2, The gap equation is
1 ~ /
Ay = -y §k/ i(k, K (a_iaiy) . (7)

The averages of combinations of theoperators can be found from the result for the statistically independent
Fermion occupation numbers

(o) = (B Be) = f(E)S, (8)
whereas
0= (a;ﬁk/) = (alfﬁ;’,) =...etc, (9)
with f(Ey) the Fermi function
1
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= upvi (—ogf o + Bk BE) (12)
since these are the only nonzero averages. Thus
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Other averages can be calculated similarly.



Gap Equation

The gap equation at nonzero temperature is then
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For the separable potential
L7 —g for |k — kgl, k' — kp| < k.
uk = k) = { 0  otherwise ’ (7

the gap equation reduces to the equation for the temperature dependent enexg¥ pap
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with E = /E2 + AX(T).

The transition temperaturg is whenA — 0, i.e.
1=N(0) / L ann( g2 ) a (19)
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Without the tanh the integral would depend logarithmicallyian and would diverge logarithmically from
the& — 0 region. The tanh cuts off the divergence&at k3T, so that the integral is about(ixw,. /kT,).
In the weak coupling limikz T, <« Aw. the integral can be evaluated precisely to give

kT, ~ 1.14hw.e YN Os, (20)
The zero temperature gap and the transition temperature are related by

2A¢
kpT,

~ 3.52, (21)

a universal result in the weak coupling limit independent of the parameters and the cutoff fregquency
In fact, although Eq.X8) for A(T) appears to depend on the cutoff, if we subtract E6) fe get
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where since the integrand now goes to zero&for A, kg T, the limits can be replaced bico. This is a
universal equation foh / kz T, as a function of’/ T,.. Although we have derived this for the special separable

potential, the result actually just depends on the weak coupling assumption« fiw.. Thus Eq. £2)
gives a quantitative prediction for many experimental superconductors.



Energetics

It is straightforward, although somewhat tedious, to calculate the free efergu N — T'S. The kinetic
energy can be written as

(Exin — ka |:<akTak¢> <aik¢a—k¢>] (23)
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The pairing energy is

1
(Ep0t> =y Z uk, k" <a§r,¢afk,¢> <a_k¢a|<¢> (25)

k,k’
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Using the gap equation to simplify the double sum.
The entropy is-kz ), p» In p, for the two sets of noninteracting Fermiamsandpy: for each there is
the one fermion state with probabilitf( E;) and the no Fermion state with probability-1f (Ey):

= =2k » _ fE)INFE)+ (1— fEQ)IN(L— f(Ep). (27)
k
At zero temperature the entropy term disappears and then
&k AZ
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We are more interested in the difference in the energy from what it would be in the normal state, which is
given by the same expression with — 0, E;, — |&/|. Thus

(E — uN), — (E — uN) =Z[|sk|—§—’€2—A—’f] (29)
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SinceN(0) ~ Neg/V the lowering of the energy is of ord&fA3/sr. This is smaller than the valug A
we might have expected,; this is because only a fraction of atdet- of the Fermi sea is affected by the
pairing.

Order Parameter and Supercurrents

We would like some macroscopic order parameter that captures the new features of the BCS state, in particular
the nonzero values a@ﬁkTa,m) in the band of states around the Fermi surface.



For the equilibrium state a convenient definition is

v = Z(a_mam) (32)
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(where | have retained the phase factors anig now complex withE = /€2 + |A|?). Since the integral
is a number that does not vary much withor A, and the normalization of the order parameter is arbitrary,
often the complex gap parametkris used as the order parameter.

Just as in a superfluid, a spatial gradient of the phase of the order parameter corresponds to a state with
mass flow, and, because the particles are charged, electric current. These currents are in an equilibrium state,
and so are supercurrents. The flowing state corresponds to pair condensation in a state with center of mass
momentung, i.e. the pair state is

D(r1.rp) = 9220 (1 —r) (1 — 1) (35)
= ) el \HIATACIUDI (1) (1] — 1) (36)
k

so that now the statés+ q/2, 1 and—k +q/2, | are occupied or empty together in the BCS wave function.
The order parameter would be defined generally as

V() =Y (a ka2 iakig/2r) €, (37)

q band

and in the special case of uniform flow = |¥| ¢/ with ¢ = q - r. In a translationally invariant system
and at zero temperature, the paired state is just a shift in momentum spaggyf the ground state, and
so the total momentum i87q/2. Thus we can write for the electric current density in terms of the phase of

the order parameter

. eh
I = —nsEV(ﬁ, (38)

with ny, — n = N/V for a translationally invariant system &t= 0.

Equation 88) is not yet quite right. Physical quantities such as the electric current mugaumpe
invariant but the quantum mechanical phase is not: a change of the gauge of the electromagnetic vector
potential A — A + Va(r) with a any function leads to a change in the phase of the wave function or
annihilation operator of a particle of chargeby v — ve'2¢/". Thus the current expression must take the
gauge invariant form

j= —nsﬁ (v¢ + %A> (39)

2m fic

where the factor of 2 multiplying is becausep is the phase of a pair wave function. (I am usings
a positive quantity, so that the electron charge-is) It is important to note that his factor of 2 is exact,
depending only on gauge invariance arguments. The factor outside the bracket only has significance as a
whole. For a translationally invariant system Galilean invariance shows that including the factofroh2
the pairing leads to the convenient resulzgf— n at zero temperature. However, the presence of a lattice
for examle eliminates this argument, and then only the combinati@an is physically relevant so that the
precise assignment of a “mass” is irrelevant.



Equation 89) is already enough to give us a key feature of the superconducting staldeigsner effect
A superconductor is a perfect diamagnet and will expel any magnetic field from its interior. Equegion (

shows us that

nye?

Vxj=-—"8, (40)

a result known as theondon equationCoupled with the Maxwell equations

4
VxB=—] (41)
C
V-B=0 (42)
this gives
V2B = A7%B, (43)
with A theLondon penetration length
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with « the fine structure constant amg the Bohr radius. The solutions to Egl3) are exponentially
decaying with the decay length so in the bulk of a superconductdr, and therefore also the currgnt

go to zero. Note that the Meissner effect is more than just perfect conductivity, which would imply that on
turning on a magnetic field in the superconducting state, eddy currents would stop the field from invading
the superconductor. The Meissner effect means that the field is actively expelled, e.g. on coolingZhrough
in a magnetic field.

Figure 1: Flux quantization

Equation 89) also leads to the important phenomenon of flux quantization. Consider a loop of super-
conductor through which a magnetic fidddpasses. Except for within a fewof the surfacesB, j — 0
in the superconductor, e.g. along the dashed contour inlFigince the pair wave function must be single
valued
$Ve¢ - dl =integerx 2. (45)
Then Eq. 89) with j = 0 gives

h
/B .dS=¢A - dl = integerx Z—C (46)
e

so that the flux through a loop well within a superconductor is quantized in units of the flux quantum
he/2e ~ 2.07 x 10~ 'gauss cri. This provides a scheme for very precise measurements of magnetic fields,
currents, and other quantities.
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