Physics 127c: Statistical Mechanics

Superconductivity: Microscopics

For repulsive interactions the properties of an interacting Fermi system are not qualitatively different from the
noninteracting system: the quantitative values of parameters are modified as described by Fermiliquid theory.
Attractive interactions however, no matter how weak, lead to an entirely new state of superconductivity. It
took almost 50 years from the discovery by Kammerlingh-Onnes in 1911 to the BCS theory by Bardeen,
Cooper and Schrieffer in 1956 for this remarkable new state of matter to be understood.

The Cooper Problem

A simple indication of the strange consequences of attractive interactions added to the Fermi gas was demon-
strated by CooperfHhys. Rev104, 1189 (1956).

First consider the familiar problem of pair binding by free particles with an attractive pair interaction
u(r), but in a momentum representation. Schrodinger’s equation for the problem is

—h?
[2—v2+u<r)]¢(r> = E¢(r) 1)
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with © = m /2 the reduced mass apdr) the wave function of the relative coordinaite- r; —r,. Introduce
the Fourier representation

¢(r) — Z¢k/eik’-r — Z¢k/eik,-(r1—r2)7 (2)
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substitute, multiply through by~*" and integrate over the volunie gives
1 ~ /
(2o = Eypr + ;u(k, k)¢ =0, (3)
with &, = 7%k?/2m and
ik, k) =ik —k') = / u(r)e kKT, (4)

Cooper considered the following problem. Imagine two particles interacting with each other above a sea
of statesk < kr that are excluded from participation. The sea of states is meant to represent the Fermi sea,
and the two particles cannot scatter into these states by the exclusion principle. In this case the wave function
must be constructed of states with- kr

$r) = pue™", (5)
k/
k'>kp

and the sum in Eq.3) is also restricted té’ > k. To make the calculation tractable, Cooper assumed a
simple attractiveseparable, band limitegotential

—g kp <k, kK <kp+k.

ik, Ky = { 0 otherwise ’ (©)
with g the coupling constant. Equatios)(how becomes
1
(26 = EYp — 8 ) ¢ =0. 7
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We are interested in the question of whether a bound state forms with total efietg@e, and so it is
convenient to measure energies with respect to the Fermi energy

&k =¢r—¢F (8)
and define the binding enerdyp by E = 2¢r — Ep (thenEB is positive for a bound state). This gives

(26 + Ep)px — 8 Z¢k’ =0. 9)
band
Clearly the solution is
A
— 10
™= @+ En) (10
and substituting back gives the eigenvalue equation
1 1
e (11)
V & (25 + Ep)
Replacing the sum over wave vectors by an integral over energy states gives
hwe
1=¢gN(© / P PRE— 12
gN(0) P EB) d¢ (12)

with w. = vrk. the cutoff frequency and/ (0) the density of states of one spin system at the Fermi surface
1. The integral is a log, giving

2w, 2
_ ~ —2/N(0)g
Ep = N 2w.e (13)

where | have assumed thak coupling limitvV (0)g <« 1 (roughly, interaction potential much less than the
Fermi energy).

The expressionl3) for the binding energy provides interesting insights. Theavsysa bound state,
no matter how weak the attractive interaction. The binding energy dependence on the coupling gasstant
nonanalytic—an essential singularity@s> 0. These results are analogous to pair binding of free particles
in two spatial dimension, and indeed the particles effectively “skate” on the two dimensional Fermi surface.
Finally the wave function

ikJ
PO, ey EB> (1)

band
is the superposition of plane waves wikhn a band of wave numbers of widtfg /fivy nearkg. So the
wave function will oscillate with a wavelength of ordq?rl and will decay on a much longer length of order
hvp/Ep. If we supposeE sets the energy scale of the superconducting state, and so can be estimated as
ks T, with T, the transition temperature to the superconducting state, the pair radius is ofgrdes 7. )k 2,
much larger than the interparticle spaciq?g1 sincekpTe K ef.

The wave functiomp (r; — r») is symmetric under the exchange of particles, and so the spin state of the
pair has to be the antisymmetric singlgt2(1] — | 1).

Many of the features of the solution to the Cooper problem survive in the full treatment. However
the calculation is inconsistent, since the two particles are excluded from the Fermi sea because they are
indistinguishable from the particles there, but we have supposed a different interaction term (none) with
these. Adding this interaction means that the pair under focus will excite other particle-hole pairs, so we
must consider the many body problem of many interacting particles and holeg wéthrk . This is the
problem BCS solved. But first it is interesting to ask: Where does the attractive interaction come from?

IA notation confusion: in the original solution set to homework 2 the TA ug€d) as thetotal density of states at the Fermi
surface—two times my (0). | have changed this in a revised version, but if you have the original version you should be aware of
this when you make a comparison.



Attractive Interaction
See Ashcroft and Mermin §26.

BCS Theory

The BCS approach can be motivated in terms of a Bose condensed pair wave function variational ansatz
W o A[p(r1—r2;0102)¢(rs — r4:0304) ... ¢ (Fy_1 — Fy; on—10N) | (15)

with A the antisymmetrization operator. For conventional superconductopathevave functionp is an
s-wave, spin singlet state, and | will focus on this case. In superfleitiy is a p-wave, spin triplet state,
and in high-T superconductors a d-wave, spin singlet state.

The Fourier representation for the s-wave singlet state is

. 1
d(ri—ra o0 =y XDy () (11l2 — J112) (16)
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which we can write as the state
1
#) =D —=x () [(K D=k )2 = (—k D)1k 1)2)] (17)
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(usingk — —k in the second term). This shows that in the wave functiothe stategk 1, —k |) are
always occupied together or are empty together.

Keeping track of the amplitudes of the different combinations of(the', —k |) states in¥ is very
complicated. BCS theory is equivalent to the assumption of a product state in Fourier representation

Wpes = 1_[¢k, (18)
K

with
dk = ur]0,0) + v |1, 1), (19)
for occupation of thé 1 and—k | states. Heray, v are functions to be found (withu,|? + |vx|? = 1 by

normalization). The assumption of s-wave pairing means they are functioksaily. To actually do the
manipulations it is often useful to go to second quantized representation. In this ndigtigis

Wpes = [ [ + veafa®y ) 10), (20)
k

with |0) the no-particle or vacuum state.
To find uy, v, minimize E — wN for this trial wave function. The kinetic energy relativeNqu is

(Exin — uN) =) 28 |ul?, (21)
k

since there is probabilityv,|> of bothk 1 and—k | to be occupied. The potential energy comes from
sums of terms with matrix elements for the potential compon¢kik’) scattering a pair from occupied
stategk 1, —k |) to empty stategk’ 1, —k’ |). The initial state has amplitudgu,, and the final state has
amplitudeu, vy so that the potential given by the sum of such terms is

1 ~ / k ok
<Epot) =y E a(k, KNujvjupvg. (22)
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This is the right answer, but to make sure the numerical factors are right it is more reliable to take the
expectation value of the second quantized version

1 ~
U= v Z u(q)a,irq,aak/_q,g/akgg/ak,g (23)
k,k’
in the state Z0).
Thus L
(B =Ny =3 26 oil® + 7 D ik, Kufvuevs. (24)
k k,k’

This equation couples the phases of iev, at differentk. For s-wave paring there is an overall phase
factor (which wold be the phase of the order parameter) which can be set to zero in calculating the energetics.
Thus we may assuma, v, are real. For p- and d- wave pairing we would be dealing with functiQrend
vk also depending on the direction kbf and there would be nontrivial phases depending on this direction
corresponding to the phase of the- 1, 2 pair wave functions. From the normalization condition we can
write for the s-wave case

U = Sinek, vy = COSH; (25)

giving
1 1
E — = 2&.(1 D — i (k, k'Y= sin 29, sin 29,/ 26
(E — uN) ; £,(1 + cos k)+V§M(, )7 Sin 2 sin 25, (26)

with 6, given by minimizing this energy. Minimizing gives

11
tan Y, = —— ik, k') sin 29,. 27
e ZSka,u( ) Sin 2, (27)
Define thegap function
Ap = —— > ik, k) sin (28)
k — 2V - u(K, k'

and the function that will turn out to be the excitation energy

Ep = /&2 + A2 (29)

Then A A
tan 2, = — —%, in®, = =&, 30
an 2, E, sin 29, E (30)
and A 1 ¢ 1 ¢
k 2 k 2 k
UKV = 50 Uk 2( Ek)’ up 2( + Ek) (31)

(Note thatv? — 1 fork < kr,&/Ex — —1, andv? — O fork > kr, &/E; — 1 as required: thus the
sign chosen foE is correct.)
Equation 28) becomes

1 Ay
Ay =—— ik, k) — 32
k V;M( ; )2Ek” (32)

which is a self consistency condition for the gap paramaier



Equation 82) defines the gap parametay, for given interaction potential. Again to make analytic
progress it is useful to consider the simple model of the separable potential, now changed to be symmetric
aboutk r

~ n_ | —& kr—ke<k k' <kp+k.
ik, k) = { 0 otherwise (33)
This gives
) Ao kp—ke <k kK < kp+ke
Ar = { 0 otherwise (34)

Transforming to an integration over energy for the spherically symmetric s-wave case the single parameter
Ao is given by

we 1
1= N(O)g/ — (35)
0 /5:2 + A(Z)
= N(0)g sinh Y(hw,/A), (36)
or
oo ~ 2hiw.e YN O3, (37)

A= ——F——
sinh Y (hw, /A)
using weak coupling in the last approximation. It is straightforward to check&hatu N is lowered for
this value ofA relative to the normal staté = 0.

To compare the results of this calculation with the Cooper problem it is useful to look at the average
occupation numbegfn;) = v2. The step function at = kr in v; for the noninteracting problem is spread
into a smooth variation over a width in~ A /vy (a width in energy of aboun). This corresponds to the
self consistent excitation of pairs out of the Fermi sea to gain the Cooper-type pairing energy.

E

0 k-k,
Figure 1. Excitation energ¥, for a BCS superconductor (solid line) and normal state (dashed line). The
energy is defined as the cost to add a patrticle to a ktaiith £ > kr relative to the chemcial potential or to
remove a particle frork with k < kr relative to—u. Thus the normal state spectrunvis|k — kr|.

To see the significance df andE; we look at the excited states of the system. For the skates-k |
in the product wave function the four eigenstates and energies measured with resect to the pair state are

| | State | Energy |
pair ur 10,0) + v |11, 1) 0
broken pair |1, 0) E; (38)
broken pair |0, 1) E;
excited statg| vy |0, 0) — uy |1, 1) 2E,




Consider the broken pair statg, 0) which is the state withkk + occupied and-k | empty. The
contribution to kinetic energ¥yin — N is & whereas in the pair state it is, from EGQL}, & (1 — & /Ey). In
the pairing energy Eq2¢) the statek is removed from the both wave vector sums, and so the pairing energy
is reduced by

2 - Ap — - Ay A2
— k,k’ UV = — k,k)— = ——, 39
% ;u( vy v = o ;u( V25, = T E, (39)
and so the excitation energy is
&i AZ
- - = — = E;. 40
&k §k< Ek) + E, k (40)
For the excited pair state the change in the kinetic energy is
&k &k
1+ =) — 1-=—). 41
a1+ )-a(1-5) D)

In the pairing energy calculation of the amplitude for scattering involving the pair ktate-k |, the
product of amplitudes that the state is occupied before scattering and empty after scatteving isstead

of u,vi. Thus the contribution to the pairing energy is the negative of what it was for the ground state pair.
This gives the excitation energy

€k €k 20
& <1+ E—k>—§k (1—E—k>+E—k—2Ek. (42)

Thus E; plays the role of the excitation energy: to add a patrticle in the excited state costs an energy
Ey = /€2 + A2, with Ay = A for [k — kr| < k.. The minimum energy is fok = kr, & = 0, showing
that A is theenergy gafdor excitations. The minimum energy cost to break a pair to form two broken pair
states, or to form the excited pair state is,2and thermodynamic quantities at low temperatures will vary as
exp(—2A /kpT,).

In Homework 2you transformed the Hamiltonian using a canonical transformation to new independent
Fermi operatorsy, S

aky = ugak + vy, (43)
ayg, = uB_x — vka;. (44)

to the form
H = const + Z Ex(ofa + B Bx)- (45)

k

For the pair ground statéy) = (u; + vka,;?afki) |0) you can show that the broken pair states corresponds to

o |¢x) andp’, |¢«) with energyE; and the excited pair state &g B, |¢«) with energy Z, showing that

the results of the two calculations agree. As you will probably agree, the canonical transformation arguments
are less complicated.

Thermodynamics

To calculate the finite temperature properties we could continue to enumerate the states by hand, but it is
simpler to switch to the approach Bbmework 2 There you found the gap equation

1
Ak = V Z I/Nt(k, k/) (ak/Ta_k/l) (46)

k'



and the quantum and thermal avere(g@Ta_kw) is easy to calculate from the inverse of the canonical
transformation

Agyp = UrAy + vkﬁ:} (47)
a_g, = uxB_i — vier (48)
and the thermal averages of the noninteracting Fernugns;
(o or ) = (B Br) = 1 (E0o (49)
whereas
- <a,§ﬁ,;/> — <agﬁ;> — . .efc (50)
with f(Ey) the usual Fermi function
f(EW) = CE/ksT 11 (51)
The equation for the gap parameM(T) becomes
(T ) Ey
A(T) = —= Kk, k)X 52
W(T) = Z( ) g, @ (ZkBT), (52)

with now E;, = ,/&2 + A2(T). For the same separable potential the equation for the\g@) at nonzero
temperature is

1= N(0) / L anh( ZE ) ae (53)
R N 2ksT ) 4%
with E = /&2 + A2(T). At the transition temperatur® the superconducting gap goes to zére> 0, and
soT, is given by
1= N(0) / "L ann( 5 ) a (54)
e T 2 )
In the weak coupling limit this gives
kT, ~ 1.14hw.e YN8, (55)
Note that the zero temperature gap is relatef].toy
2A
0 ~352 (56)
kgT,

a universal result, independent of any other parameters.

The integrals in Eqs5Q3) and 64) depend logarithmically omw,. the cutoff frequency introduced in the
interaction. However for the range > A of the integrals contributing to this logarithmic dependence
(assuming weak coupling) the integrands in E§S) @nd 64) are almost equal. Thus if we subtract, the
contribution from large& vanishes, and we can replace the upper limitbyto give

0 1 E2+ A1)\ 1 § _
/O [—m tanh( T ) - gtanh(ZkBTc)} dg = 0. (57)

This gives auniversalequation forA(T)/kgT,. as a function ofr'/T,. With some more effort it can be
argued that this result does not in fact depend on the simple form assumed for the potential, but just on the
weak coupling limitkz T, < hw,, true for any small enough attractive interaction. In this limit a universal
prediction is obtained for the thermodynamics as a functiofi /&f,. independent of details of the potential

etc.



Further Reading

You should revienHomework 2and thesolution set The original paper of Bardeen, Cooper and Schrieffer,
Phys. Rev.108 1175 (1956]s a classic. Not only do they present the full theory, but they work out many
of the important experimental tests. The review artiglev. Mod. Phys47, 331 (1975)by Leggett on
superfluidH 3, also described by BCS theory but with p-wave pairs, provides a very nice discussion of BCS
theory in general, particularly §lll and 8V, and the applicatiote’ in other sections.
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