
Physics 127c: Statistical Mechanics

Superconductivity: Microscopics

For repulsive interactions the properties of an interacting Fermi system are not qualitatively different from the
noninteracting system: the quantitative values of parameters are modified as described by Fermi liquid theory.
Attractive interactions however, no matter how weak, lead to an entirely new state of superconductivity. It
took almost 50 years from the discovery by Kammerlingh-Onnes in 1911 to the BCS theory by Bardeen,
Cooper and Schrieffer in 1956 for this remarkable new state of matter to be understood.

The Cooper Problem

A simple indication of the strange consequences of attractive interactions added to the Fermi gas was demon-
strated by Cooper [Phys. Rev.104, 1189 (1956)].

First consider the familiar problem of pair binding by free particles with an attractive pair interaction
u(r), but in a momentum representation. Schrodinger’s equation for the problem is[−h̄2

2µ
∇2+ u(r)

]
φ(r ) = Eφ(r ) (1)

withµ = m/2 the reduced mass andφ(r ) the wave function of the relative coordinater = r1− r2. Introduce
the Fourier representation

φ(r ) =
∑

k ′
φk ′e

ik ′·r =
∑

k ′
φk ′e

ik ′·(r1−r2), (2)

substitute, multiply through bye−ik·r and integrate over the volumeV gives

(2εk − E)φk + 1

V

∑
k ′
ũ(k, k ′)φk ′ = 0, (3)

with εk = h̄2k2/2m and

ũ(k, k ′) = ũ(k − k ′) =
∫
u(r )e−i(k−k ′)·r . (4)

Cooper considered the following problem. Imagine two particles interacting with each other above a sea
of statesk < kF that are excluded from participation. The sea of states is meant to represent the Fermi sea,
and the two particles cannot scatter into these states by the exclusion principle. In this case the wave function
must be constructed of states withk > kF

φ(r ) =
∑

k ′
k′>kF

φk ′e
ik ′·r , (5)

and the sum in Eq. (3) is also restricted tok′ > kF . To make the calculation tractable, Cooper assumed a
simple attractiveseparable, band limitedpotential

ũ(k, k ′) =
{ −g kF < k, k′ < kF + kc

0 otherwise
, (6)

with g the coupling constant. Equation (3) now becomes

(2εk − E)φk − g 1

V

∑
band

φk ′ = 0. (7)
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We are interested in the question of whether a bound state forms with total energyE < 2εF , and so it is
convenient to measure energies with respect to the Fermi energy

ξk = εk − εF (8)

and define the binding energyEB byE = 2εF − EB (thenEB is positive for a bound state). This gives

(2ξk + EB)φk − g 1

V

∑
band

φk ′ = 0. (9)

Clearly the solution is

φk = A

(2ξk + EB) (10)

and substituting back gives the eigenvalue equation

1= g 1

V

∑
band

1

(2ξk + EB). (11)

Replacing the sum over wave vectors by an integral over energy states gives

1= gN(0)
∫ h̄ωc

0

1

(2ξ + EB)dξ (12)

with ωc = vF kc the cutoff frequency andN(0) the density of states of one spin system at the Fermi surface
1. The integral is a log, giving

EB = 2ωc
e2/N(0)g − 1

' 2ωce
−2/N(0)g (13)

where I have assumed theweak coupling limitN(0)g � 1 (roughly, interaction potential much less than the
Fermi energy).

The expression (13) for the binding energy provides interesting insights. There isalwaysa bound state,
no matter how weak the attractive interaction. The binding energy dependence on the coupling constantg is
nonanalytic—an essential singularity asg→ 0. These results are analogous to pair binding of free particles
in two spatial dimension, and indeed the particles effectively “skate” on the two dimensional Fermi surface.
Finally the wave function

φ(r ) ∝
∑
band

1

(2ξk + EB)e
ik·r (14)

is the superposition of plane waves withk in a band of wave numbers of widthEB/h̄vF nearkF . So the
wave function will oscillate with a wavelength of orderk−1

F and will decay on a much longer length of order
h̄vF /EB . If we supposeEB sets the energy scale of the superconducting state, and so can be estimated as
kBTc with Tc the transition temperature to the superconducting state, the pair radius is of order(εF /kBTc)k

−1
F ,

much larger than the interparticle spacingk−1
F sincekBTC � εF .

The wave functionφ(r1− r2) is symmetric under the exchange of particles, and so the spin state of the
pair has to be the antisymmetric singlet 1/

√
2(↑↓ − ↓↑).

Many of the features of the solution to the Cooper problem survive in the full treatment. However
the calculation is inconsistent, since the two particles are excluded from the Fermi sea because they are
indistinguishable from the particles there, but we have supposed a different interaction term (none) with
these. Adding this interaction means that the pair under focus will excite other particle-hole pairs, so we
must consider the many body problem of many interacting particles and holes withk nearkF . This is the
problem BCS solved. But first it is interesting to ask: Where does the attractive interaction come from?

1A notation confusion: in the original solution set to homework 2 the TA usedN(0) as thetotal density of states at the Fermi
surface—two times myN(0). I have changed this in a revised version, but if you have the original version you should be aware of
this when you make a comparison.
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Attractive Interaction

See Ashcroft and Mermin §26.

BCS Theory

The BCS approach can be motivated in terms of a Bose condensed pair wave function variational ansatz

9 ∝ A [φ(r1− r2; σ1σ2)φ(r3− r4; σ3σ4) . . . φ(rN−1− rN ; σN−1σN)
]

(15)

with A the antisymmetrization operator. For conventional superconductors thepair wave functionφ is an
s-wave, spin singlet state, and I will focus on this case. In superfluidHe3 φ is a p-wave, spin triplet state,
and in high-Tc superconductors a d-wave, spin singlet state.

The Fourier representation for the s-wave singlet state is

φ(r1− r2; σ1σ2) =
∑

k

eik·(r1−r2)χ(k)
1√
2
(↑1↓2 − ↓1↑2) (16)

which we can write as the state

|φ〉 =
∑

k

1√
2
χ(k) [(k ↑)1(−k ↓)2− (−k ↓)1(k ↑)2)] (17)

(usingk →−k in the second term). This shows that in the wave function9 the states(k ↑,−k ↓) are
always occupied together or are empty together.

Keeping track of the amplitudes of the different combinations of the(k ↑,−k ↓) states in9 is very
complicated. BCS theory is equivalent to the assumption of a product state in Fourier representation

9BCS =
∏

k

φk, (18)

with
φk = uk |0,0〉 + vk |1,1〉 , (19)

for occupation of thek ↑ and−k ↓ states. Hereuk, vk are functions to be found (with|uk|2 + |vk|2 = 1 by
normalization). The assumption of s-wave pairing means they are functions of|k| only. To actually do the
manipulations it is often useful to go to second quantized representation. In this notation9BCS is

9BCS =
∏

k

(uk + vka+k↑a+−k↓) |0〉 , (20)

with |0〉 the no-particle or vacuum state.
To finduk, vk minimizeE − µN for this trial wave function. The kinetic energy relative toNµ is

〈Ekin − µN〉 =
∑

k

2ξk |vk|2 , (21)

since there is probability|vk|2 of both k ↑ and−k ↓ to be occupied. The potential energy comes from
sums of terms with matrix elements for the potential componentũ(k, k ′) scattering a pair from occupied
states(k ↑,−k ↓) to empty states(k ′ ↑,−k ′ ↓). The initial state has amplitudevkuk′ and the final state has
amplitudeukvk′ so that the potential given by the sum of such terms is〈

Epot
〉 = 1

V

∑
k,k ′

ũ(k, k ′)u∗kv
∗
k′uk′vk. (22)
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This is the right answer, but to make sure the numerical factors are right it is more reliable to take the
expectation value of the second quantized version

U = 1

2V

∑
k,k ′

ũ(q)a+k+q,σ ak ′−q,σ ′ak ′,σ ′ak,σ (23)

in the state (20).
Thus

〈E − µN〉 =
∑

k

2ξk |vk|2+ 1

V

∑
k,k ′

ũ(k, k ′)u∗kv
∗
k′uk′vk. (24)

This equation couples the phases of theuk, vk at differentk. For s-wave paring there is an overall phase
factor (which wold be the phase of the order parameter) which can be set to zero in calculating the energetics.
Thus we may assumeuk, vk are real. For p- and d- wave pairing we would be dealing with functionsuk and
vk also depending on the direction ofk, and there would be nontrivial phases depending on this direction
corresponding to the phase of thel = 1,2 pair wave functions. From the normalization condition we can
write for the s-wave case

uk = sinθk, vk = cosθk (25)

giving

〈E − µN〉 =
∑

k

2ξk(1+ cos 2θk)+ 1

V

∑
k,k ′

ũ(k, k ′)
1

4
sin 2θk sin 2θk′ (26)

with θk given by minimizing this energy. Minimizing gives

tan 2θk = 1

2ξk

1

V

∑
k ′
ũ(k, k ′) sin 2θk′ . (27)

Define thegap function

1k = − 1

2V

∑
k ′
ũ(k, k ′) sin 2θk′, (28)

and the function that will turn out to be the excitation energy

Ek =
√
ξ2
k +12

k. (29)

Then

tan 2θk = −1k

ξk
, sin 2θk = 1k

Ek
, (30)

and

ukvk = 1k

2Ek
, v2

k =
1

2
(1− ξk

Ek
), u2

k =
1

2
(1+ ξk

Ek
) (31)

(Note thatv2
k → 1 for k � kF , ξk/Ek → −1, andv2

k → 0 for k � kF , ξk/Ek → 1 as required: thus the
sign chosen forEk is correct.)

Equation (28) becomes

1k = − 1

V

∑
k ′
ũ(k, k ′)

1k′

2Ek′
, (32)

which is a self consistency condition for the gap parameter1k.
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Equation (32) defines the gap parameter1k for given interaction potential. Again to make analytic
progress it is useful to consider the simple model of the separable potential, now changed to be symmetric
aboutkF

ũ(k, k ′) =
{ −g kF − kc < k, k′ < kF + kc

0 otherwise
. (33)

This gives

1k =
{
10 kF − kc < k, k′ < kF + kc
0 otherwise

. (34)

Transforming to an integration over energy for the spherically symmetric s-wave case the single parameter
10 is given by

1= N(0)g
∫ ωc

0

1√
ξ2+12

0

(35)

= N(0)g sinh−1(h̄ωc/1), (36)

or

1 = h̄ωc

sinh−1(h̄ωc/1)
' 2h̄ωce

−1/N(0)g, (37)

using weak coupling in the last approximation. It is straightforward to check thatE − µN is lowered for
this value of1 relative to the normal state1 = 0.

To compare the results of this calculation with the Cooper problem it is useful to look at the average
occupation number〈nk〉 = v2

k . The step function atk = kF in vk for the noninteracting problem is spread
into a smooth variation over a width ink ∼ 1/h̄vF (a width in energy of about1). This corresponds to the
self consistent excitation of pairs out of the Fermi sea to gain the Cooper-type pairing energy.

 k-kF

Ek

0

Figure 1: Excitation energyEk for a BCS superconductor (solid line) and normal state (dashed line). The
energy is defined as the cost to add a particle to a statek with k > kF relative to the chemcial potential or to
remove a particle fromk with k < kF relative to−µ. Thus the normal state spectrum isvF |k − kF |.

To see the significance of1 andEk we look at the excited states of the system. For the statesk ↑,−k ↓
in the product wave function the four eigenstates and energies measured with resect to the pair state are

State Energy

pair uk |0,0〉 + vk |1,1〉 0
broken pair |1,0〉 Ek

broken pair |0,1〉 Ek

excited state vk |0,0〉 − uk |1,1〉 2Ek

(38)
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Consider the broken pair state|1,0〉 which is the state withk ↑ occupied and−k ↓ empty. The
contribution to kinetic energyEkin−Nµ is ξk whereas in the pair state it is, from Eq. (21), ξk(1− ξk/Ek). In
the pairing energy Eq. (22) the statek is removed from the both wave vector sums, and so the pairing energy
is reduced by

2

V

∑
k ′
ũ(k, k ′)ukvk′uk′vk = 1k

Ek

∑
k ′
ũ(k, k ′)

1k′

2Ek′
= −1

2
k

Ek
, (39)

and so the excitation energy is

ξk − ξk
(

1− ξk

Ek

)
+ 1

2
k

Ek
= Ek. (40)

For the excited pair state the change in the kinetic energy is

ξk

(
1+ ξk

Ek

)
− ξk

(
1− ξk

Ek

)
. (41)

In the pairing energy calculation of the amplitude for scattering involving the pair statek ↑,−k ↓, the
product of amplitudes that the state is occupied before scattering and empty after scattering is−vkuk instead
of ukvk. Thus the contribution to the pairing energy is the negative of what it was for the ground state pair.
This gives the excitation energy

ξk

(
1+ ξk

Ek

)
− ξk

(
1− ξk

Ek

)
+ 212

k

Ek
= 2Ek. (42)

ThusEk plays the role of the excitation energy: to add a particle in the excited state costs an energy

Ek =
√
ξ2
k +12

k. with 1k = 1 for |k − kF | < kc. The minimum energy is fork = kF , ξk = 0, showing
that1 is theenergy gapfor excitations. The minimum energy cost to break a pair to form two broken pair
states, or to form the excited pair state is 21, and thermodynamic quantities at low temperatures will vary as
exp(−21/kBTc).

In Homework 2you transformed the Hamiltonian using a canonical transformation to new independent
Fermi operatorsαk, βk

ak↑ = ukαk + vkβ+−k, (43)

a−k↓ = ukβ−k − vkα+k . (44)

to the form
H = const.+

∑
k

Ek(α
+
k αk + β+−kβ−k). (45)

For the pair ground state|φk〉 = (uk+vka+k↑a+−k↓) |0〉 you can show that the broken pair states corresponds to
α+k |φk〉 andβ+−k |φk〉 with energyEk and the excited pair state toα+k β

+
−k |φk〉 with energy 2Ek, showing that

the results of the two calculations agree. As you will probably agree, the canonical transformation arguments
are less complicated.

Thermodynamics

To calculate the finite temperature properties we could continue to enumerate the states by hand, but it is
simpler to switch to the approach ofHomework 2. There you found the gap equation

1k = 1

V

∑
Ek′
ũ(k, k ′)

〈
ak ′↑a−k ′↓

〉
(46)
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and the quantum and thermal average
〈
ak ′↑a−k ′↓

〉
is easy to calculate from the inverse of the canonical

transformation

aEk↑ = ukαEk + vkβ+−Ek (47)

a−Ek↓ = ukβ−Ek − vkα+Ek (48)

and the thermal averages of the noninteracting Fermionsαk, βk〈
α+Ek αEk′

〉
=
〈
β+Ek βEk′

〉
= f (Ek)δEkEk′ (49)

whereas
0=

〈
α+Ek βEk′

〉
=
〈
α+Ek β

+
Ek′
〉
= . . .etc (50)

with f (Ek) the usual Fermi function

f (Ek) = 1

eEk/kBT + 1
. (51)

The equation for the gap parameter1k(T ) becomes

1k(T ) = − 1

V

∑
Ek′
ũ(k, k)

1k′(T )

2Ek′
tanh

(
Ek′

2kBT

)
, (52)

with nowEk =
√
ξ2
k +12

k(T ). For the same separable potential the equation for the gap1(T ) at nonzero
temperature is

1= N(0)g
∫ h̄ωc

0

1

E
tanh

(
E

2kBT

)
dξ, (53)

with E = √ξ2+12(T ). At the transition temperatureTc the superconducting gap goes to zero1→ 0, and
soTc is given by

1= N(0)g
∫ h̄ωc

0

1

ξ
tanh

(
ξ

2kBTc

)
dξ. (54)

In the weak coupling limit this gives

kBTc ' 1.14h̄ωce
−1/N(0)g. (55)

Note that the zero temperature gap is related toTc by

210

kBTc
' 3.52, (56)

a universal result, independent of any other parameters.
The integrals in Eqs. (53) and (54) depend logarithmically onωc the cutoff frequency introduced in the

interaction. However for the rangeξ � 1 of the integrals contributing to this logarithmic dependence
(assuming weak coupling) the integrands in Eqs. (53) and (54) are almost equal. Thus if we subtract, the
contribution from largeξ vanishes, and we can replace the upper limit by∞, to give∫ ∞

0

[
1√

ξ2+12(T )
tanh

(√
ξ2+12(T )

2kBT

)
− 1

ξ
tanh

(
ξ

2kBTc

)]
dξ = 0. (57)

This gives auniversalequation for1(T )/kBTc as a function ofT/Tc. With some more effort it can be
argued that this result does not in fact depend on the simple form assumed for the potential, but just on the
weak coupling limitkBTc � h̄ωc, true for any small enough attractive interaction. In this limit a universal
prediction is obtained for the thermodynamics as a function ofT/Tc independent of details of the potential
etc.
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Further Reading

You should reviewHomework 2and thesolution set. The original paper of Bardeen, Cooper and Schrieffer,
Phys. Rev.108, 1175 (1956)is a classic. Not only do they present the full theory, but they work out many
of the important experimental tests. The review articleRev. Mod. Phys.47, 331 (1975)by Leggett on
superfluidHe3, also described by BCS theory but with p-wave pairs, provides a very nice discussion of BCS
theory in general, particularly §III and §V, and the application toHe3 in other sections.
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