Physics 127c: Statistical Mechanics

Fermi Liquid Theory: Collective Modes

Boltzmann Equation

The quasiparticle energy including interactions
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with e, >~ er +vr(p — pr), acts as an effective Hamiltonian for the quasiparticles. Singg can depend
on space and time, through the spatial gradie@p gfthis gives a force acting on the quasiparticles, and can
lead to oscillations or collective modes. Pictorially, we can think of the modes as “oscillations of the Fermi
sea”, although since the Fermi sea is a momentum space construction, and perturbations lead to velocities,
the modes must also involve spatial derivatives.
For wavelengths that are long compared to the interparticle spacing, corresponding to mode wave vectors
gwith g « kg, and frequencies small compared with the Fermi energy ¢, the modes can be calculated
using a kinetic theory (Boltzmann equation) for the quasiparticles. This is a semiclassical approximation
in which the phase space pointp of a quasiparticle evolves driven by the effective Hamiltoréign. For
g < kr, w < er the uncertainty principle restrictions on the accuracy of a prescription of bottpa$ not
important.
To set up the equation suppose there is an constant equilibrium distribmg,?t;)mnd a perturbation
Snpo (1, 1) '
Npo (1) =1+ 8np o (1, 1). (2)

We will study zero temperature so thq,f{, is the Fermi sea. The Boltzmann equation is
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wherel is the collision term coming from the scattering of quasiparticles.

The Boltzmann equatiorB) simplifies considerably if we only keep terms lineawsiy, ,. The spatial
dependence necessarily involvis, ,, and so the multiplying terms ir8f can be replaced by their zeroth
order values, to give
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with v, = d¢,/0p =~ vrP. At zero temperature
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Thus we finally get
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Note that although we postulated an “unperturbed distribution” of quasipant@eas if it were well defined
for all p, only its properties fop >~ pr where the concept makes sense were involved in the derivation, and
an explicité (¢, — er) occurs in the equation fdwp ;.
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Hydrodynamic Equations

As in the Boltzmann equation for the classical gas, the collision term conserves the total particle number,
momentum, and energy. Taking appropriate moments of the Boltzmann equation we could write down
conservation equations for the mass density, momentum density, and energy density. These conservation
equations would involve the divergence of correspond currents or fluxes, with expressions for these quantities
given in terms of moments @k, ,. In equilibrium these currents are zero. In the low frequency limit, the
system is close to equilibrium, and we can approximately solvérfgg, by balancing the collision term

with the driving terms coming from the gradientSrqf{,(T, wu, V) whereT, u and the velocity are space

and time dependent. This givés, , proportional tavt or gvrt with t the collision time characterizing the
collision integral. The currents can be characterized by kinetic coefficients such as the thermal conductivity,
viscosity etc. This is thaydrodynamic limitvalid for wt, gvrt < 1, when the system is everywhere close

to a (local) thermodynamic equilibrium. These calculations are very similar to the ones for the classical
gas, discussed in ??, except that the collision integral must take into account the Fermi properties of the
guasiparticles and the exclusion principle etc.

Collisionless Limit

A more novel limit is the collisionless limibr >> 1, when the dynamics is dominated by the evolution of

the state in phase space, and the collisions redistributing the quasiparticles amongst the different states can
be ignored. This is where thinking of the modes as oscillations of the Fermi sea becomes useful. Indeed, if
we imagine a displacemen , of the Fermi surface of the spincomponent at directiop we can write
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The interaction term in the Boltzmann equatiéh ¢an be evaluated as
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for the moment expanding the interaction parameter in Legendre polynomials but not using the spin symmetric
and antisymmetric notation;, ,,, = F*) + oo’ F,“’. Supposing a single mode disturbance so ifat

e'(@=») The Boltzmann equation becomes
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Introducing spin symmetric and antisymmetric displacements

Upp = ug) + ué”) (11)
up,, = u'(@s) - ugl) (12)

the two components decouple. Then dividing througly by and writing for the dimensionless speed of
the collective mode /qvr andd for the angle betweep andq, gives (for either or a)

s,a COS@ / s,a A A/ s.a
(cost — Muf" )+¥/d9 Y FCOPp - pHug =0, (13)
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Equation (3) is the dynamical equation for spin symmetric and antisymmetric modes. The paremter
A = w/qur is determined as the eigenvalues of the equation. We may exﬁ&‘ﬁdan spherical harmonics
Y. (0, ¢). The differentn modes decouple. The equations couple differémawever, leading in general to
complicated mode equations that can only be solved numerically. We can gain intuition about the modes by
making simplifying assumptions for the interaction parameﬂéfg).

Zero Sound

w/ qu Zero sound
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Figure 1: Speed of zero sound and first sound as afunctiﬁé:bfn the model where only this Fermi liquid
parameter is nonzero.

Zero sound is a spin symmetric mode that involvesm = 0 distortions, amongst others, and so couples
to the total density. A simple discussion of zero sound is given by assumingVéYﬁI'ys nonzero. Then in
Eq. (13) for the distortion of the Fermi sex, F*’ P,(p - p') reduces taFy” and the equation becomes
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and then substituting this form gives
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For A > 1 the integral is easily done
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to give the implicit equation fok
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Figure 2: Particle-hole excitation spectrum. A collective mode withvr < 1 (dashed line) is strongly
damped by Landau damping.

For A > 1 the function® (1) ranges over all positive values, and so for any posiﬂéié Eg. (L8) can be
inverted to find\(F3”). For—1 < F{" < O there are no real solutions to EG8j for A. Indeed returning
to the integral expression EdL®) shows that. must be complex. Redoing the integrals yields solutions
for A with real and imaginary parts comparable, yielding a strongly damped collective mode (decay time
comparable to frequency). This damping coming not from collisions but from a resonant interaction of
the collective mode with particle-hole excitations is knowrLasdau damping What is going on can be
understood by first considering the range of energies for exciting a particle and hole with total mormgentum

for all p with |p| > pr and|p + q| < pr. This is sketched in Figl. The upper boundary of the region
of particle-hole energies for smajlis ® = gvr. Now consider the collective mode with/qvr = ReA.
For Rer > 1 the mode frequency is outside of the particle-hole band. However forRe) < 1, the
collective mode is immersed in the excitation sea, can resonantly excite particle hole pairs, and becomes
strongly damped.
ForFé‘” < —1the solution foi corresponds to an exponentiadfyowingtime dependence. This signals
the instability of the system.
The mode we have calculated has nonzero valueglgf, dnp, and Zp’g pénp ., (i.e. total number
and momentum), as well as other moments, and so experimentally would be detestem@sSince the
mode results from the coherent interaction of the quasiparticles in the collisionless limit, rather than the near
equilibrium behavior at low frequencies, it is knownzeso soundand the hydrodynamic sound is called
first sound The speed for first sound in the model where oﬂji) is nonzero can be expressed as
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This sound exists as a propagating mode foF&ll > —1, whereas zero sound only propagatesigit > 0.
(Note the instabilityFéS) < —1 also appears asreegativecompressibility.) For our simple model of only
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Fé‘) important, the speed of zero sound (where it exists) is always greater than the speed of first sound, with
the two speeds becoming equal vq&") — Q.

First Sound and Zero Sound

First sound occurs inthe low frequency limit « 1, and zero sound in the high frequency limit > 1. For

first sound, the collisions restore the quasiparticle distribution to equilibrium, and the damping is proportional
to the deviation from equilibrium. Thus the damping relative to the propagation (eq/ Req for an
experiment with driving at some frequeney is proportional towt. On the other hand zero sound is a
collective motion of the quasiparticles, and is disrupted by collisions. The relative dissipation from collisions
is proportional tqwt) 2. Ifthe drive frequency of the experiment is increased, the mode will cross over from
firstto zero sound at a frequeney~ 1, and there will be a dissipation peak at this frequency. Alternatively,
the experimentalist might lower the temperature (always Wwith < ¢7). Since the collision rate ! is
proportional tal'? by the usual phase space arguments, the pregitictcreases as the temperature is lowered.
Experiments in liquidd ¢® for example [seébel, Anderson, and Wheatl®hys. Rev. Lettl7, 74 (1966)

show a crossover from first sound at high temperatures to zero sound at low temperatures, signalled by an
increase in the speed of propagation and a dissipation peak.

Further Reading

The Theory of Quantum Liquids, Volby Nozieres and Pine§1.4 and 81.7-1.10 arfgtatistical Mechanics,
part 2 of by Lifshitz and Pitaevskig4 discuss the dynamics of Fermi liquids.
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