
Physics 127c: Statistical Mechanics

Fermi Liquid Theory: Collective Modes

Boltzmann Equation

The quasiparticle energy including interactions

ε̃p,σ = εp + 1

V

∑
p′,σ ′

f (p,p′; σ, σ ′)δnp′,σ ′, (1)

with εp ' εF + vF (p−pF ), acts as an effective Hamiltonian for the quasiparticles. Sinceδnp,σ can depend
on space and time, through the spatial gradient ofε̃p,σ this gives a force acting on the quasiparticles, and can
lead to oscillations or collective modes. Pictorially, we can think of the modes as “oscillations of the Fermi
sea”, although since the Fermi sea is a momentum space construction, and perturbations lead to velocities,
the modes must also involve spatial derivatives.

For wavelengths that are long compared to the interparticle spacing, corresponding to mode wave vectors
q with q � kF , and frequencies small compared with the Fermi energyω � εF , the modes can be calculated
using a kinetic theory (Boltzmann equation) for the quasiparticles. This is a semiclassical approximation
in which the phase space pointr ,p of a quasiparticle evolves driven by the effective Hamiltonianε̃p,σ . For
q � kF , ω � εF the uncertainty principle restrictions on the accuracy of a prescription of both ofr ,p is not
important.

To set up the equation suppose there is an constant equilibrium distributionn(0)p,σ and a perturbation
δnp,σ (r , t)

np,σ (r , t) = n(0)p,σ + δnp,σ (r , t). (2)

We will study zero temperature so thatn(0)p,σ is the Fermi sea. The Boltzmann equation is

∂np,σ

∂t
+ ∂ε̃p,σ

∂p
· ∂np,σ

∂r
− ∂ε̃p,σ

∂r
· ∂np,σ

∂p
= I ({δnp,σ

}
), (3)

whereI is the collision term coming from the scattering of quasiparticles.
The Boltzmann equation (3) simplifies considerably if we only keep terms linear inδnp,σ . The spatial

dependence necessarily involvesδnp,σ , and so the multiplying terms in (3) can be replaced by their zeroth
order values, to give

∂δnp,σ

∂t
+ vp · ∂δnp,σ

∂r
− ∂n

(0)
p,σ

∂p
· 1

V

∑
p′,σ ′

f (p, σ ;p′, σ ′)∂δnp′,σ ′

∂r
= I ({δnp,σ

}
), (4)

with vp = ∂εp/∂p ' vF p̂. At zero temperature

∂δn(0)p,σ

∂p
' vp

∂n(0)p,σ

∂εp
= −δ(εp − εF )vp. (5)

Thus we finally get

∂δnp,σ

∂t
+ vp · ∂δnp,σ

∂r
+ δ(εp − εF )vp · 1

V

∑
p′,σ ′

f (p, σ ;p′, σ ′)∂δnp′,σ ′

∂r
= I ({δnp,σ

}
). (6)

Note that although we postulated an “unperturbed distribution” of quasiparticlesn(0)p,σ as if it were well defined
for all p, only its properties forp ' pF where the concept makes sense were involved in the derivation, and
an explicitδ(εp − εF ) occurs in the equation forδnp,σ .
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Hydrodynamic Equations

As in the Boltzmann equation for the classical gas, the collision term conserves the total particle number,
momentum, and energy. Taking appropriate moments of the Boltzmann equation we could write down
conservation equations for the mass density, momentum density, and energy density. These conservation
equations would involve the divergence of correspond currents or fluxes, with expressions for these quantities
given in terms of moments ofδnp,σ . In equilibrium these currents are zero. In the low frequency limit, the
system is close to equilibrium, and we can approximately solve forδnp,σ by balancing the collision term
with the driving terms coming from the gradients ofn(0)p,σ (T , µ, v) whereT ,µ and the velocityv are space
and time dependent. This givesδnp,σ proportional toωτ or qvF τ with τ the collision time characterizing the
collision integral. The currents can be characterized by kinetic coefficients such as the thermal conductivity,
viscosity etc. This is thehydrodynamic limitvalid forωτ, qvF τ � 1, when the system is everywhere close
to a (local) thermodynamic equilibrium. These calculations are very similar to the ones for the classical
gas, discussed in ??, except that the collision integral must take into account the Fermi properties of the
quasiparticles and the exclusion principle etc.

Collisionless Limit

A more novel limit is the collisionless limitωτ � 1, when the dynamics is dominated by the evolution of
the state in phase space, and the collisions redistributing the quasiparticles amongst the different states can
be ignored. This is where thinking of the modes as oscillations of the Fermi sea becomes useful. Indeed, if
we imagine a displacementup̂,σ of the Fermi surface of the spinσ component at direction̂p we can write

δnp,σ = δ(εp − εF )vFup̂,σ (7)

The interaction term in the Boltzmann equation (6) can be evaluated as

1

V

∑
p′,σ ′

f (p, σ ;p′, σ ′)∂δnp′,σ ′

∂r
= N(0)

∫
dεpδ(εp − εF )

∫
d�′

4π

∑
l,σ ′

Fl,σσ ′

2N(0)
Pl(p̂ · p̂′)vF ∂up̂,σ

∂r
(8)

= vF
∫
d�′

8π

∑
l,σ ′

Fl,σσ ′Pl(p̂ · p̂′)∂up̂′,σ ′

∂r
, (9)

for the moment expanding the interaction parameter in Legendre polynomials but not using the spin symmetric
and antisymmetric notationFl,σσ ′ = F (s)l + σσ ′F (a)l . Supposing a single mode disturbance so thatup̂,σ ∝
ei(q·r−ωt) The Boltzmann equation becomes

(vF p̂ · q− ω)up̂,σ + vF p̂ · q
∫
d�′

8π

∑
l,σ ′

Fl,σσ ′Pl(p̂ · p̂′)up̂′,σ ′ = 0. (10)

Introducing spin symmetric and antisymmetric displacements

up̂,↑ = u(s)p̂ + u(a)p̂ (11)

up̂,↓ = u(s)p̂ − u(a)p̂ (12)

the two components decouple. Then dividing through byqvF and writingλ for the dimensionless speed of
the collective modeω/qvF andθ for the angle between̂p andq, gives (for eithers or a)

(cosθ − λ)u(s,a)p̂ + cosθ

8π

∫
d�′

∑
l

F
(s,a)
l Pl(p̂ · p̂′)u(s,a)p̂′ = 0. (13)
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Equation (13) is the dynamical equation for spin symmetric and antisymmetric modes. The paremter
λ = ω/qvF is determined as the eigenvalues of the equation. We may expandu

(s,a)

p̂ on spherical harmonics
Yl,m(θ, φ). The differentmmodes decouple. The equations couple differentl however, leading in general to
complicated mode equations that can only be solved numerically. We can gain intuition about the modes by
making simplifying assumptions for the interaction parametersF

(s,a)
l .

Zero Sound

54321
F0

(s)

1

ω/qvF Zero sound

First sound

-1 0

Figure 1: Speed of zero sound and first sound as a function ofF
(s)
0 in the model where only this Fermi liquid

parameter is nonzero.

Zero sound is a spin symmetric mode that involvesl = m = 0 distortions, amongst others, and so couples
to the total density. A simple discussion of zero sound is given by assuming onlyF

(s)
0 is nonzero. Then in

Eq. (13) for the distortion of the Fermi sea
∑

l F
(s)
l Pl(p̂ · p̂′) reduces toF (s)0 and the equation becomes

(cosθ − λ)u(s)p̂ + F (s)0

cosθ

2

∫
d�′

4π
u
(s)

p̂′ = 0. (14)

Clearly

u
(s)

p̂ = C
cosθ

cosθ − λ (15)

and then substituting this form gives

1+ 1

2
F
(s)
0

∫
d�′

4π

cosθ ′

cosθ ′ − λ = 0. (16)

Forλ > 1 the integral is easily done∫
d�′

4π

cosθ ′

cosθ ′ − λ =
1

2

∫ 1

−1

x

x − λdx = 1+ λ
2

ln

(
λ− 1

λ+ 1

)
(17)

to give the implicit equation forλ

1

F
(s)
0

= 8(λ) = λ

2
ln

(
λ+ 1

λ− 1

)
− 1. (18)
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Figure 2: Particle-hole excitation spectrum. A collective mode withω/qvF < 1 (dashed line) is strongly
damped by Landau damping.

Forλ > 1 the function8(λ) ranges over all positive values, and so for any positiveF
(s)
0 Eq. (18) can be

inverted to findλ(F (s)0 ). For−1 < F
(s)
0 < 0 there are no real solutions to Eq. (18) for λ. Indeed returning

to the integral expression Eq. (16) shows thatλ must be complex. Redoing the integrals yields solutions
for λ with real and imaginary parts comparable, yielding a strongly damped collective mode (decay time
comparable to frequency). This damping coming not from collisions but from a resonant interaction of
the collective mode with particle-hole excitations is known asLandau damping. What is going on can be
understood by first considering the range of energies for exciting a particle and hole with total momentumq

h̄ωq = εp+q − εp (19)

for all p with |p| > pF and|p+ q| < pF . This is sketched in Fig.1. The upper boundary of the region
of particle-hole energies for smallq is ω = qvF . Now consider the collective mode withω/qvF = Reλ.
For Reλ > 1 the mode frequency is outside of the particle-hole band. However for 0< Reλ < 1, the
collective mode is immersed in the excitation sea, can resonantly excite particle hole pairs, and becomes
strongly damped.

ForF (s)0 < −1 the solution forλ corresponds to an exponentiallygrowingtime dependence. This signals
the instability of the system.

The mode we have calculated has nonzero values of
∑

p,σ δnp,σ and
∑

p,σ pδnp,σ (i.e. total number
and momentum), as well as other moments, and so experimentally would be detected assound. Since the
mode results from the coherent interaction of the quasiparticles in the collisionless limit, rather than the near
equilibrium behavior at low frequencies, it is known aszero sound, and the hydrodynamic sound is called
first sound. The speed for first sound in the model where onlyF

(s)
0 is nonzero can be expressed as

ω

qvF
=
√

1+ F (s)0

3
. (20)

This sound exists as a propagating mode for allF
(s)
0 > −1, whereas zero sound only propagates forF

(s)
0 > 0.

(Note the instabilityF (s)0 < −1 also appears as anegativecompressibility.) For our simple model of only
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F
(s)
0 important, the speed of zero sound (where it exists) is always greater than the speed of first sound, with

the two speeds becoming equal forF (s)0 →∞.

First Sound and Zero Sound

First sound occurs in the low frequency limitωτ � 1, and zero sound in the high frequency limitωτ � 1. For
first sound, the collisions restore the quasiparticle distribution to equilibrium, and the damping is proportional
to the deviation from equilibrium. Thus the damping relative to the propagation (e.g. Imq/Req for an
experiment with driving at some frequencyω) is proportional toωτ . On the other hand zero sound is a
collective motion of the quasiparticles, and is disrupted by collisions. The relative dissipation from collisions
is proportional to(ωτ)−1. If the drive frequency of the experiment is increased, the mode will cross over from
first to zero sound at a frequencyω ∼ τ−1, and there will be a dissipation peak at this frequency. Alternatively,
the experimentalist might lower the temperature (always withkBT � εF ). Since the collision rateτ−1 is
proportional toT 2 by the usual phase space arguments, the productωτ increases as the temperature is lowered.
Experiments in liquidHe3 for example [seeAbel, Anderson, and WheatleyPhys. Rev. Lett.17, 74 (1966)]
show a crossover from first sound at high temperatures to zero sound at low temperatures, signalled by an
increase in the speed of propagation and a dissipation peak.

Further Reading

The Theory of Quantum Liquids, Vol. Iby Nozieres and Pines§1.4 and §1.7-1.10 andStatistical Mechanics,
part 2of by Lifshitz and Pitaevskii§4 discuss the dynamics of Fermi liquids.
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