
Physics 127c: Statistical Mechanics

Fermi Liquid Theory: Thermodynamics

Energy Expansion

For a small number of excited quasiparticles the energy expanded about the ground state is

E = E0+
∑
p,σ

εpδnp,σ +O(δn2) (1)

whereδnp,σ is plus one for every excited quasiparticle forp > pF and minus one for every quasihole (empty
state in the noninteracting limit) forp < pF . (I have switched to momentum rather than wave vector labels to
be consistent with the nicest reference on this topicNozieres and Pines.) Since the excitations have definite
particle number, momentum and spin the total momentum and spin are

N −N0 =
∑
p,σ

δnp,σ , P =
∑
p,σ

pδnp,σ , Sz =
∑

p

(
δnp,σ↑ − δnp,σ↓

)
. (2)

I have chosen to use a spin notation of “up” or “down” with respect to a convenientz axis rather than a more
rotationally invariant formulation. The quantityεp is not the same as in the interacting system, but can be
expanded in the same way aboutp = pF

εp = εF + vF (p − pF )+ · · · (3)

whereεF , vF are not the same as in the noninteracting system. The single quasiparticle energy does not
depend on spin in a spin invariant system. SincepF is unchanged, aneffective massm∗ is often defined as

vF = pF/m∗. (4)

Using these expressions we can calculate the density of states of the single quasiparticle excitations. An
energy band1ε corresponds to a momentum shell nearpF of width1ε/vF . In this band there are

1Nσ = V

(2πh̄)3
4πp2

F

1ε

vF
(5)

states of one spin type, withV the volume of the system. The density of states (per energy per volume) for
each spin is writtenN(0), where the 0 refers to “at zero energy relative to the Fermi surface”. Thus

N(0) = m∗pF
2π2h̄3 . (6)

This is changed from the noninteracting gas by the factorm∗/m.
It is usually convenient to look at the free energyF = E − µN (this is not the Helmholtz free energy

A = E − T S), and subtracting off the ground state valueF0 since we are interested in the changes from the
ground state due to the excitations

F − F0 =
∑
p,σ

(εp − µ)δnp,σ + · · · . (7)

Since at zero temperatureµ = εF , andεp − εF is small forp ' pF where quasiparticles are well defined
objects, this term is “second order small”. Landau had the significant insight to realize that for consistent
answers theO(δn2) terms must also be retained, so that

F − F0 '
∑
p,σ

(εp − µ)δnp,σ + 1

2V

∑
p,p′
σ,σ ′

f (p, σ ;p′σ ′)δnp,σ δnp′,σ ′ . (8)
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Equation (8) introduces theeffective interactionf (p, σ ;p′σ ′) between the quasiparticle. The prefactor
1/2V is chosen in comparison with the usual expression for the interaction between particles. We know
very little about the effective interaction, except the properties deriving from symmetries, and that it should
vary smoothly with its arguments. Sincep ' pF for quasiparticles to be well defined, we can ignore the
dependence onp, p′, and by rotational invariance this meansf can only depend on̂p · p̂′ i.e. the angle
betweenp andp′. By spin rotation symmetry there is just a spin-parallel, and spin-antiparallel interaction.
This means we can write

f (p, σ ;p′σ ′) =
∞∑
l=0

(
f
(s)
l + σσ ′f (a)l

)
Pl(p̂ · p̂′) (9)

where the angular dependence is expanded in Legendre polynomials,σσ ′ = 1 for parallel spins and−1 for
antiparallel spins, and thef (s,a)l areconstants, that depend of course on the nature of the physical system,
pair potential etc. Sincef (s,a)l has the dimensions of energy times volume, it is conventional to introduce
dimensionlessFermi liquid parametersF (s,a)l through

F
(s,a)
l = 2N(0)f (s,a)l (10)

with 2N(0) the total density of states per energy per volume at the Fermi surface.
The quasiparticle interaction is still parameterized in terms of a discrete infinity of constant that must

be found by other means (experiment or microscopic theory) but in practice interesting physical properties
often just depend on smalll angular components. Fermi liquid theory then provides a phenomenological
theory in terms of the smalll interaction parametersF (s,a)l .

Some examples are given in the next few subsections. In all the calculations it should be remembered
that only excitations forp nearpF can be considered, and we can usually approximatep ' pF p̂ with p̂ the
unit vector in the direction ofp, so that the integration over the radial|p| direction is usually trivial, and only
the angular integration is left.

The calculations can often be formulated in terms of infinitesimal perturbations of the Fermi sea—indeed
we will see in the next lecture that collective modes such as sound can be understood in terms of the “ringing”
of the Fermi sea. For a displacement of the Fermi surface byδpF at momentum̂ppF we then have

δnp,σ = −dn0

dεp
vF δpF (p̂) (11)

with n0(εp) the Fermi function. At zero temperature the Fermi function is a step function, and so

δnp,σ = δ(εp − εF )vF δpF (p̂). (12)

Since this is a singular function, I prefer to formulate the calculation directly in terms of the relevant sums,
such as

∑
p,σ δnp,σ to give the change in the number of particles. However you will often see the calculations

in text books done in terms of Eq. (12). At some stage when the sum overp is done, it can be replaced by an
angular average and an integration over|p| or overεp using the density of states 2N(0) (if the two spins are
behaving in the same way)∑

p,σ

· · · → V

(2π)3
2N(0)

∫
dεpδ(εp − εF )

∫
d�

4π
vF δpF (p̂) · · · (13)
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Specific Heat

Because of the quasiparticle interaction, the energy cost of adding an excitation atp is no longerεp but is

ε̃p,σ − µ = δF

δnp,σ
= (εp − µ)+ 1

V

∑
p,σ

f (p,p′; σ, σ ′)δnp′,σ ′, (14)

and depends on the other quasiparticles present. In general it may depend onp andσ not only on|p|. Since
thecountingof states is exactly the same as in the noninteracting system, the entropyS(

{
δnp,σ

}
) for a given

quasiparticle distribution is the same as in the noninteracting system

S = −kB
∑
p,σ

[
δnp,σ ln δnp,σ + (1− δnp,σ ) ln(1− δnp,σ )

]
. (15)

This means that the equilibrium distribution (minimizeF − T S with respect toδnp,σ ) remains the Fermi
distribution

δnp,σ (T ) = 1

eβ(ε̃p,σ−µ) + 1
, (16)

with the difference that̃εp,σ now depends self consistently onδn through Eq. (14).
Actually, in calculating the specific heat all these complications drop out. This is because summing over

|p|, ∫ dp p2δnp,σ is O(T 2). This means the interaction term in the energy isO(T 4), whereas the single
particle terms areO(T 2). In additionµ = εF + O(T 2), and this change can again be neglected. The
calculation proceeds just as for the noninteracting gas [seeLecture 17of Ph127a, especially Eqs. (50-53)]
but with the density of states Eq. (6), givingCV ∝ T , and

CV

CV free
= m∗

m
. (17)

Compressibility

pF

δpF

Figure 1: Construction to calculate the bulk modulus

The isothermal bulk modulus (the inverse of the compressibility), is

KT = n
(
∂P

∂n

)
T ,V

. (18)
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with n the density (number of particles per volume). Using the Gibbs-Duhem expression

dµ = n−1dP − sdT (19)

this can be written

KT = n2

(
∂µ

∂n

)
T ,V

. (20)

The speed of sounds is given by

s2 = KT

nm
= n

m

(
∂µ

∂n

)
T ,V

. (21)

To calculateδµ/δn we start from a reference ground state, and putδnp,σ = 1 in a shell atpF of width
δpF so that the change in the total number of particles is

∑
δnp = V δn (see Fig.1). The extra energy of a

adding a quasiparticle atpF + δpF is thenδµ which from Eq. (14) is

δµ = vF δpF + 1

V

∑
p,σ

shaded

f
(s)

p,p′(δnp′,↑ + δnp′,↓) (22)

Obviously the spin antisymmetric part offp,p′ does not contribute. Similarly only thel = 0 component
contributes, and so

δµ = vF δpF + F
(s)
0

2N(0)

 1

V

∑
p,σ

shaded

(δnp,↑ + δnp,↓)

 . (23)

The term in [ ] is justδn, which is also 2N(0)vF δpF , so

δµ = δn

2N(0)

(
1+ F (s)0

)
. (24)

Thus
∂µ

∂n
=
(
∂µ

∂n

)
free

1+ F (s)0

m∗/m
(25)

with (∂µ/∂n)free= π2h̄3/mpF the value in the noninteracting gas of the same density. The compressibility
ands2 are therefore changed from the values of the noninteracting system by the factor(1+ F (s)0 )/(m∗/m).
The speed of sound is actually given by

s2 = 1

3

(pF
m

)2 1+ F (s)0

m∗/m
. (26)

Magnetic susceptibility

Similar arguments give the renormalization of the magnetic susceptibility. Now spins are flipped, so that to
linear order in the magnetic fieldB we have

∑
p δnp,↑ = −∑p δnp,↓. The Fermi sea of up spins with lower

energy in the field increases at the expense of the down spins, so that the chemical potentials are equal. The
final results for the susceptibility (you will drive this in the homework) is

χ = µ2
B

2N(0)

1+ F (a)0

= χfree
m∗/m

1+ F (a)0

. (27)
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pF

δpF

δn↑

δn↓

Figure 2: Construction to calculate the Fermi liquid corrections to the magnetic susceptibility.

δn=1
δn=-1

mvG

Figure 3: Changeδnp due to Galilean boost.

Effective Mass

For a translationally invariant system the requirement of Galilean invariance leads to the expression for the
effective mass

m∗

m
= 1+ 1

3
F
(s)
1 . (28)

Consider the change in energy of a quasiparticle at momentump due to a Galilean boostvG. We can
evaluate this in two ways. The first way is a direct boost for an excitation of momentump

δEp = p · vG. (29)

The second way is to construct the change in energy in the lab frame, from the change in the single
particle and interaction terms coming from shifting all momentum bymvG

δEp = vF p̂ · (mvG)+ 1

V

∑
p′
f
(s)

p,p′
(
δnp′,↑ + δnp′,↓

)
(30)

whereδnp,σ is the spin-symmetric change from the shift of the Fermi, see Fig.3. Sinceδnp,σ ∝ cosθ with
θ the angle between̂p andvG only the l = 1 component off (s)p,p′ will contribute, and we can make the
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replacement

f
(s)

p,p′ →
F
(s)
1

2N(0)
p̂ · p̂′. (31)

Equating the two expressions forδEp then gives

p · vG = vF p̂ · (mvG)+ F
(s)
1

2N(0)
p̂ · 1

V

∑
p′

p̂′
(
δnp′,↑ + δnp′,↓

)
(32)

We can calculate the sum

1

V

∑
p′

p̂′
(
δnp′,↑ + δnp′,↓

) = 〈cos2 θ
〉
2N(0)vFmvG (33)

and
〈
cos2 θ

〉 = 1/3, so that dividing through byp ' pF and usingvF = pF/m∗ gives

1= m

m∗

(
1+ 1

3
F
(s)
1

)
, (34)

which is Eq. (28).

Parameters

The correction factors are often not small. For example for liquidHe3 the values are

m∗
m

F
(s)
0 F

(a)
0 F

(s)
1

s2

s2free

χ

χfree

melting pressure 6.2 94. −0.74 15.7 15.3 24.
zero pressure 3.0 10.1 −0.52 6.0 2.3 6.3

Particularly at the melting pressure, where the density is largest, some of the correction factors are very large,
e.g.F (s)0 approaching 100. Nevertheless Fermi liquid theory is found to work very well: the qualitative
behavior is the same as the noninteracting system (CV ∝ T , χ → const), with changed coefficients given
by these parameters.

Further Reading

The Theory of Quantum Liquids, Vol. Iby Nozieres and Pinesis a readable reference on phenomenological
Fermi liquid theory.Statistical Mechanics, part 2of the Landau and Lifshitz series is also good, but less
readable.Pathria has a brief discussion in §10.8.

April 30, 2004
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