Physics 127c: Statistical Mechanics

Fermi Liquid Theory: Thermodynamics

Energy Expansion

For a small number of excited quasiparticles the energy expanded about the ground state is

E=Eo+ Y &pdnp, + 0@n?) (1)
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wheresdny , is plus one for every excited quasiparticle for- pr and minus one for every quasihole (empty
state in the noninteracting limit) for < pr. (I have switched to momentum rather than wave vector labels to
be consistent with the nicest reference on this tdfmezieres and Pinek Since the excitations have definite
particle number, momentum and spin the total momentum and spin are
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| have chosen to use a spin notation of “up” or “down” with respect to a conveneexis rather than a more
rotationally invariant formulation. The quantity, is not the same as in the interacting system, but can be
expanded in the same way about pr

ep=¢r+vp(p—pr)+--- (3)

whereer, vy are not the same as in the noninteracting system. The single quasiparticle energy does not
depend on spin in a spin invariant system. Sipgds unchanged, aeffective mass:* is often defined as

VU = pF/I’I’ﬁ< (4)

Using these expressions we can calculate the density of states of the single quasiparticle excitations. An
energy band\e corresponds to a momentum shell nparof width Ae/vr. In this band there are
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states of one spin type, withh the volume of the system. The density of states (per energy per volume) for
each spin is writtev (0), where the 0 refers to “at zero energy relative to the Fermi surface”. Thus
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This is changed from the noninteracting gas by the faatotm.

It is usually convenient to look at the free eneljy= E — uN (this is not the Helmholtz free energy
A = E — TS), and subtracting off the ground state valagsince we are interested in the changes from the
ground state due to the excitations
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Since at zero temperature= ¢y, ande, — er is small forp >~ pr where quasiparticles are well defined
objects, this term is “second order small”. Landau had the significant insight to realize that for consistent
answers the (§n?) terms must also be retained, so that
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Equation 8) introduces theffective interactiory (p, o; p'c’) between the quasiparticle. The prefactor
1/2V is chosen in comparison with the usual expression for the interaction between particles. We know
very little about the effective interaction, except the properties deriving from symmetries, and that it should
vary smoothly with its arguments. Singe>~ pr for quasiparticles to be well defined, we can ignore the
dependence op, p/, and by rotational invariance this meaygiscan only depend o - p’ i.e. the angle
betweerp andp’. By spin rotation symmetry there is just a spin-parallel, and spin-antiparallel interaction.
This means we can write

f®.o:pe) =Y (£ + o0’ f) Pp-) ©)
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where the angular dependence is expanded in Legendre polynaswials, 1 for parallel spins and-1 for
antiparallel spins, and thﬁ“’“) areconstantsthat depend of course on the nature of the physical system,
pair potential etc. Sincg}("”) has the dimensions of energy times volume, it is conventional to introduce
dimensionles&ermi liquid parameters”** through

F*? = 2N(0) 15 (10)

with 2N (0) the total density of states per energy per volume at the Fermi surface.

The quasiparticle interaction is still parameterized in terms of a discrete infinity of constant that must
be found by other means (experiment or microscopic theory) but in practice interesting physical properties
often just depend on smdllangular components. Fermi liquid theory then provides a phenomenological
theory in terms of the smallinteraction paramete@(“‘).

Some examples are given in the next few subsections. In all the calculations it should be remembered
that only excitations fop nearpr can be considered, and we can usually approximpatep rp with p the
unit vector in the direction gb, so that the integration over the radia| direction is usually trivial, and only
the angular integration is left.

The calculations can often be formulated in terms of infinitesimal perturbations of the Fermi sea—indeed
we will see in the next lecture that collective modes such as sound can be understood in terms of the “ringing”
of the Fermi sea. For a displacement of the Fermi surfacipbyat momentunp pr we then have
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with no(e,) the Fermi function. At zero temperature the Fermi function is a step function, and so
Snpo = 8(ep — ep)Vrdpr(P). (12)

Since this is a singular function, | prefer to formulate the calculation directly in terms of the relevant sums,
such aszp,g énp, o to give the change in the number of particles. However you will often see the calculations
in text books done in terms of EdLY). At some stage when the sum oyeis done, it can be replaced by an
angular average and an integration ojy@ror overe, using the density of statesV20) (if the two spins are
behaving in the same way)
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Specific Heat
Because of the quasiparticle interaction, the energy cost of adding an excitgtiswai longere, but is
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and depends on the other quasiparticles present. In general it may degeadamn not only on|p|. Since
thecountingof states is exactly the same as in the noninteracting system, the eﬂ'(l{(m)g,(, }) for a given
quasiparticle distribution is the same as in the noninteracting system

S=—kg Y [8npqINnpe+ (1—bnp,)IN(L—8np,)]. (15)
p,o

This means that the equilibrium distribution (minimiZe— 7'S with respect tdSn, ,) remains the Fermi

distribution
1

with the difference tha&, , now depends self consistently ém through Eq. {4).
Actually, in calculating the specific heat all these complications drop out. This is because summing over

Ipl, [dp p%Snp, is O(T?). This means the interaction term in the energpi&*), whereas the single

particle terms are)(7T?). In additionyu = s + O(T?), and this change can again be neglected. The

calculation proceeds just as for the noninteracting gasliseture 170f Ph127aespecially Egs. (50-53)]

but with the density of states Ed)( giving Cy « T, and

onpo(T) = (16)

== (17)

Compressibility

Figure 1: Construction to calculate the bulk modulus

The isothermal bulk modulus (the inverse of the compressibility), is

P
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with n the density (number of particles per volume). Using the Gibbs-Duhem expression

du =n"tdP —sdT (29)
this can be written ;
Ky = n? (—“) . (20)
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The speed of soundis given by
§2 = ﬁ _n <a_“> ) (21)
nm  m\on)yry

To calculatesu/6n we start from a reference ground state, anddayt, = 1 in a shell atpr of width
8pr so that the change in the total number of particle® i8n, = Vén (see Fig.l). The extra energy of a
adding a quasiparticle gtz + dp is thensu which from Eq. (4) is
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Obviously the spin antisymmetric part ¢f y does not contribute. Similarly only the= 0 component
contributes, and so
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The termin [] is justn, which is also 2/ (0)vépr, SO
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with (8¢ /0n)ree = 72h% /mpr the value in the noninteracting gas of the same density. The compressibility
ands? are therefore changed from the values of the noninteracting system by the(ﬂa%tcﬁié‘”)/(m*/m).
The speed of sound is actually given by
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Magnetic susceptibility

Similar arguments give the renormalization of the magnetic susceptibility. Now spins are flipped, so that to
linear order in the magnetic fiel®d we have)_, énp y = — 3, énp ;. The Fermi sea of up spins with lower

energy in the field increases at the expense of the down spins, so that the chemical potentials are equal. The
final results for the susceptibility (you will drive this in the homework) is

2 2N (0) B m*/m
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Figure 3: Changén, due to Galilean boost.

Effective Mass

For a translationally invariant system the requirement of Galilean invariance leads to the expression for the
effective mass

m*
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Consider the change in energy of a quasiparticle at momeptdoe to a Galilean boost;. We can
evaluate this in two ways. The first way is a direct boost for an excitation of momegntum

The second way is to construct the change in energy in the lab frame, from the change in the single
particle and interaction terms coming from shifting all momentunmlvy:
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whereénp , is the spin-symmetric change from the shift of the Fermi, seeFi§incesdn, , « cost with

0 the angle betweef) andvs only thel = 1 component offpffg, will contribute, and we can make the



replacement
(s)

F
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Equating the two expressions f®E, then gives

(s)
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We can calculate the sum
1 A/
v Z P (Snp/,T + 5np/,¢) = <0052 0) 2N (O)vpmug (33)
p/

and(cos’ ) = 1/3, so that dividing through by ~ p; and usingyy = py/m* gives

1
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which is Eq. £8).

Parameters

The correction factors are often not small. For example for ligiiid the values are

m* s a s 2
melting pressure 6.2 | 94. | —0.74 | 157 | 153 | 24.
zero pressure | 3.0 | 101 | -052| 6.0 | 23 | 6.3

Particularly at the melting pressure, where the density is largest, some of the correction factors are very large,
e.g. Fés) approaching 100. Nevertheless Fermi liquid theory is found to work very well: the qualitative
behavior is the same as the noninteracting sys&&mda T, x — const), with changed coefficients given

by these parameters.

Further Reading

The Theory of Quantum Liquids, Volby Nozieres and Pineis a readable reference on phenomenological
Fermi liquid theory. Statistical Mechanics, part @f the Landau and Lifshitz series is also good, but less
readable Pathria has a brief discussion in §10.8.
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