Physics 127c: Statistical Mechanics

Second Quantization

Ladder Operators in the SHO

It is useful to first review the use of ladder operators in the simple harmonic oscillator. Here | present the
bare bones—review your favorite Quantum textbook for more details.

The Hamiltonian for the SHO is
H= —p2 4 Igy (1)
“omP TN

For this section only, | will scale variables so that= 1, K = 1,and alsai = 1, to save writing. So the
Hamiltonian is

1 1,
H = ép + EX (2)
and usingp = —id/dx (remember = 1) Schrodinger's equatioNy = Ev gives eigenstateg, and
energy eigenvalues,
2
1 2
_EEWn(x)'i'Ex Yn(x) = €,¥ (x). (3)

This differential equation can be solved with all the technology of orthogonal polynomials to find the eigen-
valuesg, =n + 1, etc.
We can instead solve the problem algebraically by introducing up and down ladder opktaanich

1

b= E(p —ix) (4)
1

bt = ()" = ﬁ(p +ix) (5)

where thet superscript denotes the Hermitian conjugate. We know thatahenutator

[x,pl =[xp —px] =i (6)

is equivalent to the coordinate representafior> —id/dx, and so it is natural to look at the commutation
properties ob, b™:

1
[0.6"] = 3lp —ix. p +ix] )
=—i[x,p] =1. (8)
The Hamiltonian is 1
H=>b"h+ > 9)
and we are led to look at
[b,bb] = bbb — bTbb (10)
= [b,b™]b =D, (11)
and
[bT,bTh] = bTbtb — bThb™T (12)
= —b*[b,b"] = —b*. (13)



Collecting the results:

b, b*] = 1, (14a)
[b, b*b] = b, (14b)
[b+, b*b] = —b™. (14c)

Since H is the sum of squares, the eigenvalues must be positive, and so there is lowestegrangy
corresponding normalized eigenfunctigp. Let's consider the state/, and ask how the Hamiltonian acts
on this state using the commutation rules to transfer the actiéh afto q:

1
H (byro) = (b™b + 300 (15)
= D" b+ )~ blyo (16)
= (g0 — D(bYo). 17)

This suggests thaty is an eigenfunction with energy — 1, but sincesg was defined as the lowest energy
this is not possible, and the only way out is
byro = 0. (18)

Thusthe ground state eigenfunction is defined by the action of the down ladder opérgitcing zero
Similarly

H (™ Y0) = (0 + D(b" o) (19)
so thath g is an eigenfunction with energy + 1. Continuing in this way we find a “ladder” of eigenstates
1
Y, = (b")"Yo withenergy e, =n + > (20)

We can argue that this generates the complete set of states, etc., etc. (see your Quantum text book). Note
that

btby, = n, (21)

so the operatab*b acts as a level counter.
We have not addressed the normalization ofihe&reated in this way. The normalization of tiig can
be related:

<1/fn|wn) = (¢n71|bb+|anl> = (lllnfllb—i_b + 1|1[/n71) =n (K//nflh”nfl) . (22)
Sinceyg is normalized, this give&), |v,,) = n!. Then the functions

u, = ()~ y, (23)

are normalized eigenfunction@,, |u,) = 1.
Rewriting the effect of the ladder operators¥nin terms of the normalized states gives

b u, =~/n+ lu,41 (24)
bu, = /nu,_1 (25)
btbu, = nu,. (26)

Remembering that the leval can be thought of as bosons in the single particle state of energy 1 we
therefore have the following dictionary. We have introduced a raising operator or boson creation operator
b*, and a lowering operator or boson annihilation operatdrhe operatob™b = n counts the level or the
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number of bosons. The Hamiltonian is justh plus a constant. (Going back to unscaled units, it would be
b*b times the harmonic oscillator ener@iw, plus a constant.) The lowering or annihilation operator gives
zero when acting on the lowest or zero patrticle state. The analysis in terms of ode theory has been replaced
by an analysis in terms of the algebra of thé* operators, a considerable simplification.
Other expectation values can also be calculated e.g.

1
(uolx?|uo) = =5 (ol (0" = b)(®B — b)luo) (27)
= —% (uol(®b* — b*b — bb™ + bb|ug) (28)
1 1
= E(Mol(bbﬂbto) =5 (29)

whereb |ug) = 0 = (ug| b™ has been used. Again this is considerably easier than integrating over the
Gaussian form ofig(x).

Many Particle Systems
Occupation number representation

For a many patrticle system we choose as the basis any symmetrized (bosons) or antisymmetrized (fermions)
product of complete orthonormal set of single particle stateOften these will be chosen as momentum
states, position states, or eigenstates of the noninteracting Hamiltonian.

Bosons: The N particle basis state is

Yp(F1, 72...Ty) =C Z¢1(P F)P1(PT2) ... p1(P Tyy) ... Po(PFn) (30)
P

where¢,,q = 1...Q occursn, times (‘n, particles in the statg,”). The sum runs ovew!
permutationsP and the normalization constant is

C = (N'nylna! .. .nph)~ Y2, (31)
Last term we introduced theccupation number representatiarere this state is represented
Yp = |nln2...nQ...> (32)

where all then, are zero for the empty statgs> Q. We define boson creation operah;;r and
annihilation operatob, that adds or subtracts one particle from the single particle g¢tate

b;r |n1n2 SNy ..nQ) = (ng + 1)%2 |n1n2 c(ng+ 1. .nQ>, (33a)
by |n1n2 celg nQ) = (nq)l/2 \nlnz. (g —=1.. .nQ). (33b)

The prefactors are motivated by the ladder-operator results, and can be checked to preserve the nor-
malization. Of course i, = 0, the second result is just zero, consistent with the actidroofa zero
particle state. Itis easy to check that* satisfy

(b, bj] = Oys» (34)
[brs bv] = [bJr b+] =0. (35)

ro>vs



Fermions The antisymmetrized Fermi basis state is the Slater determinant

Vr(Frr2...7n) = C Y (=D ¢1(PF)$2(PF2) ... ¢n(PTFy) (36)
P

where now all they; have to be different for a nonzero wave function (equivalent to the Pauli exclusion
principle). The normalization constant is

C = (N) Y2 (37)
The occupation number representation is
VrF = Innz...) (38)

where each; is one if the state appears in the Slater determinant and zero otherwise. Note that the
order of the states affects the overall sign through(th#)”, so we must have some convention for
ordering the list of one particle states. What are the appropriate creation and annihilation operators?

First consider the single particle state. Possible occupation numberslaiee0 the statef®) and|1).
Define creation operatart and annihilation operatar such that

at10)=11) at1)=0

al0)=0 a|l) =|0). (39)

(Take care of the difference between 0 &d\d) It is easy to check that, a™ satisfyanticommutation

rules
la,a*} =1 (40a)
{a,a} =0= {a+, a+} (40b)
where
{A, B} = AB + BA. (41)

For a multiparticle system

_ (=1D)% |nny...0,...) ifn,=1
as lnnp...ng...) = { 0 ifn, = 0 (42a)
0 ifn, =1
+ _ K
a5 Imnz...ny..) = { (=D |nang...1,..) ifn,=0 (42b)
where
S=n1+ny+---n5_1 (43)
is to keep track of the ordering convention. The full algebra is then
{ar, a;r} = 8,5, (44a)
{a,,a,} = 0= {a;”,a;r}. (44b)
Note, for example that
afa;r 10,0,...) = —a;af 0,0,...) (45)

consistent with the definition in terms of Slater determinants.



In either case the number operator that counts the number of particles is the same

+
n { b+b, BOSONS (46)

ata, FERMIONS

and has eigenvalues corresponding to the possible occupation numbers of the(8tdtéor Fermions,
0,1, ... for Bosons). It follows from the commutation or anticommutation rules that in either case

[ns,n,] =0 (47)

so that the sz, } are simultaneously diagonalizable, as we expect from the definition of occupation number
states.

A general many particle wave functiaf can be expressed as a linear combination of the occupation
number basis states. The expectation vallag:,| ) may then be nonintegral.

We have replaced complicated symmetric product or determinant wave functions by states in the simpler
occupation number representation, and have developed the algebra of operators connecting these states. Any
occupation number state can be generated by acting on the no-particl®s{@de “vacuum state”) with
appropriate combinations of creation operatdrsThis notation is called “second quantization” as opposed
to the original “first quantization” notation. It is the notation of quantum field theory. The next task is to
write physicaloperators in terms of these elementary operators.

Physical Operators

We are usually interested in few-body operators, i.e. those involvzing a few particle coordinates in the
“usual” first quantization notation, such as the kinetic enefgy= —% Y. V2 or the potential energy

V = Zi<ju(7,- —171)
For a one body operat@?; = > f; the second quantized expression is

O1=Y (¢ If16s)cles (48)

r,s

where(¢, | f| ¢,) is the matrix element

G 1f1 ) = / & ¢7 ) £ Py () (49)

andc representa for Fermions and for Bosons.
For a two body operataD, = Zij f(r;, ;) the second quantized form is

02 = Z qursC;C;CsC, (50)

pqrs
with
Frars = / Prd® §1 O G )by 7). (51)
Note carefully for Fermions the ordering of theperators in Eq.50)— this ordering does not matter for
bosons because the operators commute. These expressions are the same for both Bosons and Fermions.

We will prove these results for the more difficult Fermion case, first the one particle operator. In first
guantized notation we consider

R =" fF)Alp1(FD2(2) . .. oy (Fx)] (52)

5



with A the antisymmetrization operation. Singe f is unchanged by particle permutation we can put it
inside theA operation. We then use completeness ofgthe

FESF) =D e 1f165) ¢ (F) (53)

r

so thatR becomes the sum, with weight®, | /| ¢,), of antisymmetrized products in which thth basis
stateg, is replaced byp,. This is the content of the second quantized expression, sjngehas precisely
this effect. For a two particle operator the analogous result holds, i.e. we replace basis funetieita
basis functiong, ¢ with weight f,,,.,. The ordering of the operators arises because

(cyeyeser)(cfe)0) = c,c. |0) (54)

which is the required transformation (check from the (anti)commutation rules).

Examples

A common choice of basis is plane wave states in a voltme L°

7 -

. 1 s 2n
(F) = —=€"", k=—(U,m,n). 55
¢ (r) N L,( ) (55)
(If there is spin, as must be the case for Fermions, we would use plane wave states for each spingtate, i.e.
and the sums ovétbelow would be enlarged to sums owemdo.) The kinetic energy i = Dk k,cfrck,

with
Tip = —/dsre : <——V2> (56)
giving
hk?
T = Zskcgc,; with g, = o (57)
k
The potential energy involves the matrix element
Vil§2%3lz4 — 92 / / d3rd3 / —zklr —1k2r u(r ?/)ei£3-7ei124-7/ (58&)
Qz d3l" ez( k1 k2+k3+k4)r/d3R el( k2+k4) RM(R) (58b)
1 -
- Qa—kl k2+k3+k4u(k2 ka) (58c)
writing R = 7 — 7 and in the last expression
i) = f d®Ru(Rye ", (59)
This gives for the second quantized operator
1 -
V= >0 ”Z u(q)cgﬁcg_éc,;,c,;. (60)
k,k'.q

In the case of spins, we usually are concerned with a spin-independent interaction, and then

1
V::§§-§:qu)2;qg;jqacﬂowka. (61)

kK.G
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Another common choice is the position basis, e.g. forithgarticle to be at position
¢(ri) =8(F; — 7). (62)

With this basis, the creation and annihilation operators are usually wiittéR) and+ (). They satisfy the
algebras:

Bosons:
[¥ (@), v ()] =87 —7') (63a)
[v @, )] =0= [y, ¥y )] (63Db)
Fermions:
{(v@. v} =8¢ -7 (64a)
W@, v} =0={y*@®, v} (64b)
The kinetic and potential energies are
2
T = / &Eryti) (—h—v2> G (65a)
2m
V= % / f dPrd’r'u =YW EOYTEEYE) (65b)
or with spin (and spin independent interaction)
2
=% [@ruii) (-5, 5) el (662)
V= %Z [ [ drdru =7u; @0 @@ ) (66b)
These two choices of creation and annihilation operators are related by
1 o
Y =—=) "¢, (67a)
Ve F
1 -
Yt F) == el (67b)
and the inverse
;= 715 / dr ey (7, (68a)
cf = 715 / d3r 9Tyt (), (68b)

as can be verified by constructing the plane wave s{at6).

Further Reading

Consult your favorite Quantum textbook for harmonic oscillator ladder operdfathria §10.1 discusses
the formalism of second quantization, as do a number of the books on reserve for the class.
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