
Physics 127c: Statistical Mechanics

Second Quantization

Ladder Operators in the SHO

It is useful to first review the use of ladder operators in the simple harmonic oscillator. Here I present the
bare bones—review your favorite Quantum textbook for more details.

The Hamiltonian for the SHO is

H = 1

2m
p2+ 1

2
Kx2. (1)

For this section only, I will scale variables so thatm = 1,K = 1,and alsoh̄ = 1, to save writing. So the
Hamiltonian is

H = 1

2
p + 1

2
x2 (2)

and usingp = −i∂/∂x (remember̄h = 1) Schrodinger’s equationHψ = Eψ gives eigenstatesψn and
energy eigenvaluesεn

−1

2

d2

dx2
ψn(x)+ 1

2
x2ψn(x) = εnψ(x). (3)

This differential equation can be solved with all the technology of orthogonal polynomials to find the eigen-
valuesεn = n+ 1

2, etc.
We can instead solve the problem algebraically by introducing up and down ladder operatorsb+ andb

b = 1√
2
(p − ix) (4)

b+ = (b)+ = 1√
2
(p + ix) (5)

where the+ superscript denotes the Hermitian conjugate. We know that thecommutator

[x, p] ≡ [xp − px] = i (6)

is equivalent to the coordinate representationp → −i∂/∂x, and so it is natural to look at the commutation
properties ofb, b+:

[b, b+] = 1

2
[p − ix, p + ix] (7)

= −i[x, p] = 1. (8)

The Hamiltonian is

H = b+b + 1

2
, (9)

and we are led to look at

[b, b+b] = bb+b − b+bb (10)

= [b, b+]b = b, (11)

and

[b+, b+b] = b+b+b − b+bb+ (12)

= −b+[b, b+] = −b+. (13)
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Collecting the results:

[b, b+] = 1, (14a)

[b, b+b] = b, (14b)

[b+, b+b] = −b+. (14c)

SinceH is the sum of squares, the eigenvalues must be positive, and so there is lowest energyε0 and
corresponding normalized eigenfunctionψ0. Let’s consider the statebψ0, and ask how the Hamiltonian acts
on this state using the commutation rules to transfer the action ofH ontoψ0:

H(bψ0) = (b+b + 1

2
)bψ0 (15)

= [b(b+b + 1

2
)− b]ψ0 (16)

= (ε0− 1)(bψ0). (17)

This suggests thatbψ0 is an eigenfunction with energyε0− 1, but sinceε0 was defined as the lowest energy
this is not possible, and the only way out is

bψ0 = 0. (18)

Thusthe ground state eigenfunction is defined by the action of the down ladder operatorb giving zero.
Similarly

H(b+ψ0) = (ε0+ 1)(b+ψ0) (19)

so thatb+ψ0 is an eigenfunction with energyε0+1. Continuing in this way we find a “ladder” of eigenstates

ψn = (b+)nψ0 with energy εn = n+ 1

2
. (20)

We can argue that this generates the complete set of states, etc., etc. (see your Quantum text book). Note
that

b+bψn = nψn (21)

so the operatorb+b acts as a level counter.
We have not addressed the normalization of theψn created in this way. The normalization of theψn can

be related:
〈ψn|ψn〉 =

〈
ψn−1|bb+|ψn−1

〉 = 〈ψn−1|b+b + 1|ψn−1
〉 = n 〈ψn−1|ψn−1〉 . (22)

Sinceψ0 is normalized, this gives〈ψn|ψn〉 = n!. Then the functions

un = (n!)−1/2ψn (23)

are normalized eigenfunctions,〈un|un〉 = 1.
Rewriting the effect of the ladder operators onψn in terms of the normalized statesun gives

b+un =
√
n+ 1un+1 (24)

bun = √nun−1 (25)

b+bun = nun. (26)

Remembering that the leveln can be thought of asn bosons in the single particle state of energy 1 we
therefore have the following dictionary. We have introduced a raising operator or boson creation operator
b+, and a lowering operator or boson annihilation operatorb. The operatorb+b = n counts the level or the
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number of bosons. The Hamiltonian is justb+b plus a constant. (Going back to unscaled units, it would be
b+b times the harmonic oscillator energyh̄ω, plus a constant.) The lowering or annihilation operator gives
zero when acting on the lowest or zero particle state. The analysis in terms of ode theory has been replaced
by an analysis in terms of the algebra of theb, b+ operators, a considerable simplification.

Other expectation values can also be calculated e.g.

〈
u0|x2|u0

〉 = −1

2

〈
u0|(b+ − b)(b+ − b)|u0

〉
(27)

= −1

2

〈
u0|(b+b+ − b+b − bb+ + bb|u0

〉
(28)

= 1

2

〈
u0|(bb+|u0

〉 = 1

2
(29)

whereb |u0〉 = 0 = 〈u0| b+ has been used. Again this is considerably easier than integrating over the
Gaussian form ofu0(x).

Many Particle Systems

Occupation number representation

For a many particle system we choose as the basis any symmetrized (bosons) or antisymmetrized (fermions)
product of complete orthonormal set of single particle statesφi . Often these will be chosen as momentum
states, position states, or eigenstates of the noninteracting Hamiltonian.

Bosons: TheN particle basis state is

ψB(Er1, Er2 . . . ErN) = C
∑
P

φ1(P Er1)φ1(P Er2) . . . φ1(P Ern1) . . . φQ(P ErN) (30)

whereφq, q = 1 . . .Q occursnq times (“nq particles in the stateφq”). The sum runs overN !
permutationsP and the normalization constant is

C = (N !n1!n2! . . . nQ!)−1/2. (31)

Last term we introduced theoccupation number representationwhere this state is represented

ψB =
∣∣n1n2 . . . nQ . . .

〉
(32)

where all thenq are zero for the empty statesq > Q. We define boson creation operatorb+q and
annihilation operatorbq that adds or subtracts one particle from the single particle stateφq

b+q
∣∣n1n2 . . . nq . . . nQ

〉 = (nq + 1)1/2
∣∣n1n2 . . . (nq + 1) . . . nQ

〉
, (33a)

bq
∣∣n1n2 . . . nq . . . nQ

〉 = (nq)1/2 ∣∣n1n2 . . . (nq − 1) . . . nQ
〉
. (33b)

The prefactors are motivated by the ladder-operator results, and can be checked to preserve the nor-
malization. Of course ifnq = 0, the second result is just zero, consistent with the action ofb on a zero
particle state. It is easy to check thatb, b+ satisfy

[br, b
+
s ] = δrs, (34)

[br, bs ] = [b+r , b
+
s ] = 0. (35)
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Fermions The antisymmetrized Fermi basis state is the Slater determinant

ψF (Er1, Er2 . . . ErN) = C
∑
P

(−1)P φ1(P Er1)φ2(P Er2) . . . φN(P ErN) (36)

where now all theφi have to be different for a nonzero wave function (equivalent to the Pauli exclusion
principle). The normalization constant is

C = (N !)−1/2. (37)

The occupation number representation is

ψF = |n1n2 . . .〉 (38)

where eachni is one if the state appears in the Slater determinant and zero otherwise. Note that the
order of the states affects the overall sign through the(−1)P , so we must have some convention for
ordering the list of one particle states. What are the appropriate creation and annihilation operators?

First consider the single particle state. Possible occupation numbers are 0,1, i.e. the states|0〉 and|1〉.
Define creation operatora+ and annihilation operatora such that

a+ |0〉 = |1〉 a+ |1〉 = 0
a |0〉 = 0 a |1〉 = |0〉 . (39)

(Take care of the difference between 0 and|0〉.) It is easy to check thata, a+ satisfyanticommutation
rules {

a, a+
} = 1 (40a)

{a, a} = 0= {a+, a+} (40b)

where
{A,B} = AB + BA. (41)

For a multiparticle system

as |n1n2 . . . ns . . .〉 =
{
(−1)S |n1n2 . . .0s . . .〉 if ns = 1

0 if ns = 0
(42a)

a+s |n1n2 . . . ns . . .〉 =
{

0 if ns = 1
(−1)S |n1n2 . . .1s . . .〉 if ns = 0

(42b)

where
S = n1+ n2+ · · · ns−1 (43)

is to keep track of the ordering convention. The full algebra is then{
ar, a

+
s

} = δrs, (44a)

{ar, as} = 0= {a+r , a+s } . (44b)

Note, for example that
a+1 a

+
2 |0,0, . . .〉 = −a+2 a+1 |0,0, . . .〉 (45)

consistent with the definition in terms of Slater determinants.
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In either case the number operator that counts the number of particles is the same

ns =
{
b+s bs BOSONS
a+s as FERMIONS

(46)

and has eigenvalues corresponding to the possible occupation numbers of the states (0,1 for Fermions,
0,1, . . . for Bosons). It follows from the commutation or anticommutation rules that in either case

[ns, nr ] = 0 (47)

so that the set{nr} are simultaneously diagonalizable, as we expect from the definition of occupation number
states.

A general many particle wave functionψ can be expressed as a linear combination of the occupation
number basis states. The expectation value〈ψ |ns |ψ〉 may then be nonintegral.

We have replaced complicated symmetric product or determinant wave functions by states in the simpler
occupation number representation, and have developed the algebra of operators connecting these states. Any
occupation number state can be generated by acting on the no-particle state|0〉 (the “vacuum state”) with
appropriate combinations of creation operatorsc+. This notation is called “second quantization” as opposed
to the original “first quantization” notation. It is the notation of quantum field theory. The next task is to
write physicaloperators in terms of these elementary operators.

Physical Operators

We are usually interested in few-body operators, i.e. those involving a few particle coordinates in the
“usual” first quantization notation, such as the kinetic energyT = − h2

2m

∑
i ∇2

i or the potential energy
V =∑i<j u(Eri − Erj ).

For a one body operatorO1 =∑ fi the second quantized expression is

O1 =
∑
r,s

〈φr |f |φs〉 c+r cs (48)

where〈φr |f |φs〉 is the matrix element

〈φr |f |φs〉 =
∫
d3r φ∗r (Er)f (Er)φs(Er) (49)

andc representsa for Fermions andb for Bosons.
For a two body operatorO2 =∑ij f (Eri, Erj ) the second quantized form is

O2 =
∑
pqrs

fpqrsc
+
p c
+
q cscr (50)

with

fpqrs =
∫
d3rd3r ′ φ∗p(Er)φ∗q (Er ′)f (Er, Er ′)φr(Er)φs(Er ′). (51)

Note carefully for Fermions the ordering of thec operators in Eq. (50)— this ordering does not matter for
bosons because the operators commute. These expressions are the same for both Bosons and Fermions.

We will prove these results for the more difficult Fermion case, first the one particle operator. In first
quantized notation we consider

R =
∑
s

f (Ers)A[φ1(Er1)φ2(Er2) . . . φN(ErN)] (52)
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with A the antisymmetrization operation. Since
∑
f is unchanged by particle permutation we can put it

inside theA operation. We then use completeness of theφs

f (Er)φs(Er) =
∑
r

〈φr |f |φs〉φr(Er) (53)

so thatR becomes the sum, with weights〈φr |f |φs〉, of antisymmetrized products in which thesth basis
stateφs is replaced byφr . This is the content of the second quantized expression, sincec+r cs has precisely
this effect. For a two particle operator the analogous result holds, i.e. we replace basis functionsr, s with
basis functionsp, q with weightfpqrs . The ordering of thec operators arises because

(c+p c
+
q cscr)(c

+
r c
+
s ) |0〉 = c+p c+q |0〉 (54)

which is the required transformation (check from the (anti)commutation rules).

Examples

A common choice of basis is plane wave states in a volume� = L3

φEk(Er) =
1√
�
ei
Ek·Er , Ek = 2π

L
(l,m, n). (55)

(If there is spin, as must be the case for Fermions, we would use plane wave states for each spin state, i.e.φEkσ ,
and the sums overEk below would be enlarged to sums overEk andσ .) The kinetic energy isT =∑Ek,Ek′ TEkEk′c+Ek cEk′
with

TEkEk′ =
1

�

∫
d3re−iEk·Er

(
− h̄

2

2m
∇2

)
ei
Ek′·Er (56)

giving

T =
∑
Ek
εkc
+
Ek cEk with εk = h̄2k2

2m
. (57)

The potential energy involves the matrix element

VEk1Ek2Ek3Ek4
= 1

�2

∫ ∫
d3rd3r ′ e−iEk1·Ere−iEk2·Er ′u(Er − Er ′)eiEk3·EreiEk4·Er ′ (58a)

= 1

�2

∫
d3r ei(−Ek1−Ek2+Ek3+Ek4)·Er

∫
d3R ei(−Ek2+Ek4)· ER u( ER) (58b)

= 1

�
δ−Ek1−Ek2+Ek3+Ek4

ũ(Ek2− Ek4) (58c)

writing ER = Er − Er ′ and in the last expression

ũ(Eq) =
∫
d3R u( ER)e−Eq·Er . (59)

This gives for the second quantized operator

V = 1

2�

∑
Ek,Ek′,Eq

ũ(Eq)c+Ek+Eqc+Ek′−EqcEk′cEk. (60)

In the case of spins, we usually are concerned with a spin-independent interaction, and then

V = 1

2�

∑
Ek,Ek′,Eq
σ,σ ′

ũ(Eq)c+Ek+Eq,σ c+Ek′−Eq,σ ′cEk′,σ ′cEk,σ . (61)
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Another common choice is the position basis, e.g. for theith particle to be at positionEr
φ(Eri) = δ(Eri − Er). (62)

With this basis, the creation and annihilation operators are usually writtenψ+(Er) andψ(Er). They satisfy the
algebras:

Bosons:

[ψ(Er), ψ+(Er ′)] = δ(Er − Er ′) (63a)

[ψ(Er), ψ(Er ′)] = 0= [ψ+(Er), ψ+(Er ′)] (63b)

Fermions: {
ψ(Er), ψ+(Er ′)} = δ(Er − Er ′) (64a){
ψ(Er), ψ(Er ′)} = 0= {ψ+(Er), ψ+(Er ′)} (64b)

The kinetic and potential energies are

T =
∫
d3r ψ+(Er)

(
− h̄

2

2m
∇2

)
ψ(Er) (65a)

V = 1

2

∫ ∫
d3rd3r ′u(Er − Er ′)ψ+(Er)ψ+(Er ′)ψ(Er ′)ψ(Er) (65b)

or with spin (and spin independent interaction)

T =
∑
σ

∫
d3r ψ+σ (Er)

(
− h̄

2

2m
∇2

)
ψσ(Er) (66a)

V = 1

2

∑
σ,σ ′

∫ ∫
d3rd3r ′u(Er − Er ′)ψ+σ (Er)ψ+σ ′(Er ′)ψσ ′(Er ′)ψσ (Er) (66b)

These two choices of creation and annihilation operators are related by

ψ(Er) = 1√
�

∑
Eq
ei Eq·Er cEq, (67a)

ψ+(Er) = 1√
�

∑
Eq
e−i Eq·Er c+Eq , (67b)

and the inverse

cEq = 1√
�

∫
d3r e−i Eq·Erψ(Er), (68a)

c+Eq =
1√
�

∫
d3r ei Eq·Erψ+(Er), (68b)

as can be verified by constructing the plane wave statec+q |0〉.

Further Reading

Consult your favorite Quantum textbook for harmonic oscillator ladder operators.Pathria §10.1 discusses
the formalism of second quantization, as do a number of the books on reserve for the class.
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