Physics 127b: Statistical Mechanics

Fluctuations at a Second Order Transition

We can use the Landau free energy to investiflatsuationsof the order parameter and so the validity of
mean field theory, and the expansion itself.

Remember that in the canonical ensemble the probability of a macroscopic configuration is proportional to
exp(—BAA), whereA A is the change in the Helmholtz free energy arising from the change in configuration.
Thus we have for a configuratiem(r) of the Ising ferromagnet order parameter

P (m(7)) oc e BAMED 1)

with A(m(r)) given by the Landau expansion.

Let's hope that fluctuations are small about the mean we calculatedpi.e= m — m is small. Then we
have
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Note f (§m) provides the effective potential for small fluctuations in the quadratic minimum. Since the forms
above and belowW, are basically the same, lets work with the expression
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It is useful to go to Fourier notation:
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and then
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where we have used_, = m; (6m real) in the last step .
This gives for the free energy for a magnetization configuration
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This is now used in Eq.1j to give the probability ofn; and som(r). We notice that the free energy is
the sum of quadratic terms, so that the probability distribu¢ioft* is the product of Gaussians in the,,
yielding for the ensemble average of the fluctuations:
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The quantity(\mc; }2> is proportional to the static structure factfg) that would be measured, for example,
in spin dependent X-ray or neutron scattering. Fourier transforming back gives us the correlation function.

The correlation functior; (7) is defined by
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Now introducing the Fourier transform
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where we have usdeh;m_;) « 554 since fluctuations in different modes will be uncorrelated.
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To see this it is best to go to real and imaginary parts—usually the best way to be really sure of
fluctuations in Fourier space (arg, andm; independent or not?)—i.e.

Smy = R, +il, (10a)
Sm_, =R, —il, (10b)

where we have usetin (7) real to getR_, = R, and/_, = —1,. Then we can write Eq.6) as

A=AG)+2V > (a1 + yq?)(R2+ 12). (11)
g>0

Note that we have replac@é by Zzbo, i.e. a sum over some conveniently defined positive
half space, since the fluctuationsgaaind —g are not independent. Now Eql1) is truly the
sum of independent quadratic terms. This meRpsind I; (for all g > 0) are independent.
Gaussian, fluctuating variables, and in particular equipartition gives
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since(R;1;) = 0 for anyg, ¢', and
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as surmised in Eq.7§.
Using the Eq. {) and converting thg-sum to an integral in the usual way gives
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The integral may be done (we did a similar integral in the Thomas-Fermi model of a screened charge in an
electron gas) to give
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defining thecorrelation lengthe = (y /a1)Y/?, or explicitly
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Fluctuations occur over correlated regions of $iZE) which divergesapproaching the critical temperature
from above or below.

These results fo§(g), G(¥), and the correlation length are known@sistein-Zernikeheory.

When is mean field theory good?

The expression/) shows that the mean square fluctuation®ag) wavelengthdiverge towardd’,

(Imi=ol’) = 5o (18)

Close enough t@, the fluctuations will become as important as the mean, and the simple expressions interms
of m will break down. We estimate the temperat@tewhen this happens by asking when the fluctuations
over a correlation volume will be comparable to the mean, i.e. by setting

(Sm(&)sm(0)) = m?, (19)
which gives
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or sinceT, — T¢ will usually be small
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This is known as thé&inzburg criterion For temperatures closer @ than 7 fluctuations cannot be
neglected, and mean field theory will be unreliable. A similar region afpisexpected to be dominated by
fluctuations. The region nedf. where fluctuations are important is known as thiéical region Outside of

this range, mean field theory should be a good approximation. | have used the Ginzburg approach to calculate
the range, since the numerical factors are quite large, and give a more reliable estimate of the critical region.
Perhaps a better intuitive understanding is given by demanding that the free energy of the ordering over a
correlation volume be greater thapT, for fluctuations to be small, i.e.

5f & Z ksT. (22a)
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We conclude thatlose enougho 7. mean field theory willalwaysbreak down, and fluctuations become
important. Since the Landau expansion itself is also only useful “figathere may in fact be no range

of temperatures over which mean field theory is quantitatively accurate, although even in these cases it
remains a useful qualitative guide. However the Ginzburg criterion depends on physical parameters of the
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system, and some systems are accurately described by mean field theoryvexgaepbse to7,. One
example is superconductivity, where the correlation length is long compared to atomic scales (roughly
£ ~ &(1—T/T,)~Y?wherez, is larger than atomic scales by a factor/ T, ~ 10%). Sincet appears cubed

in the Ginzburg criterion (we are interested in fluctuations over the correlalomse, the critical region is

unobservably small, e.d1— 75 /7T.) ~ 10-° — 1012, and mean field theory is highly accurate for practical
temperature ranges.
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