Physics 127b: Statistical Mechanics

Second Order Phase Transitions

The Ising Ferromagnet

Consider a simple@-dimensional lattice ofV classical “spins” that can point up or dows;, = +1. We
suppose there is an interactidnbetween nearest neighbor spins so that the parallel alignment is favored,

with the Hamiltonian 1
HZ—EJ;S[S5+5—/LZS13. (1)

Here the sums run over all sites in the lattice, and sh&um runs over thed®2nearest neighbors. The factor
of 1/2 in the first term is to avoid double counting the interaction, and the second term is the interaction of
the momentgws; with an external magnetic field.

The canonical partition function is

0= Ze—ﬁH{Si} 2)
{si}

summing the Boltzmann factor over all spin configuratipns The enumeration of all configurations cannot
be done ford > 3, and although possible th = 2 is extremely hard there as well (a problem solved by
Onsager). We will use an approximate solution technique knowneas field theory

Last term we solved the problem of noninteracting spins in a magnetic field described by the Hamiltonian
HO = - Z Sibv (3)

writing b for uB. This is easy to deal with, since the Hamiltonian is the sum over independent spins, unlike
Eqg. (1) which also has pair interaction terms. For example we can calculate the partition function as the
product of single spin partition functions

Qo =[e™"" + 1" (4)
and the average spin on each site is
ePt — e=Pb
(si) = PP T tanh(8b). 5)

In the mean field approximation we suppose thatithespin sees aaffective fieldh, s, which is the sum of
the external field and the interaction from the neighbors calculated as if each neighboring spin were fixed at
its ensemble average value

bepr =b+J Z (Sits) - (6)

8

We now look for a self consistent solution where eéghtakes on the same valuevhich is then given in
analogy with Eq. %)

s =tanh[(b + 2Jds)]. )

Lets first look atb = 0. Defines = 2dBJs so that

& = 2dpJ tanhe. (8)
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Figure 1: Graphical solution of the self consistency condition.

This is easily solved graphically. F@r > 7. = 2dJ/kp the only solution i = 0. ForT < T, two new
solutions develop (equal in magnitude but opposite signs) withrowing continuously below,. NearT,
we can get the behavior by expanding tarih smalle, so that Eq. §) becomes

T. 1,
&= ?(8 — §8 ) (9)
giving to lowest order is smalill — 7/ T,)
_ 1/2
s=i¢§(TCT T) . (10)

Focusing on theower lawtemperature dependence ndarwe introduce the small reduced temperature
deviationr = (T — T.)/T. and write this for smalt < 0 ass o |¢|?. This introduces therder parameter
exponen = 1/2 in mean field theory.

We can also calculate the magnetic susceptibility ds/db|,_,. FromEd. ) we have (writing’ = ds/db)

T,
s’ = secR[B(b + 2Jds)] (B + ?s/) (11)
so that just aboveé,
1 (T-T\*
= 12
X kBTc< T. ) ’ 42

giving adivergingsusceptibility ag” approache§, from abovey o |¢|7" with the susceptibility exponent
y = 1in mean field theory. (The usual definition of the susceptibiliyAs/d B = N u?ds/db.)

Exactly atT, there is anonlinearsusceptibility easily derived by expanding the tanh function in Ej. (

s:(ﬂcb+s)—%(ﬁcb+s)3+---. (13)

The terms linear i cancel, so we must retain théterm. On the other hand the lowest order, linear term,
in b survives, so we can ignore termslifi bs etc. This gives

b\ L3
kBT) T (14)

s(T =T, B) >~ (
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The dependence of the order parameten the symmetry breaking fieldat 7, and for smalb, i.e.s o b/
introduces the exponedt= 3 in mean field theory.

With a little more effort we can calculate the internal enetggnd other thermodynamic potentials. We will
do this in zero magnetic field only. In the mean field approximatiois simply given byNd “bonds” each
with energy—J s2

T.—T
U=—NdJs®=—-3NdJ ( - ) . (15)
We can try to evaluate the free energy from the partition function calculated in analogy with)Eeplacing

wB there withu B, ;s = 2Jds (rememberB is assumed to be zero). This turns out not to be quite right, so
we will call the expressiom; (I for independent)

Ap = —NkgT In[e”T/Ts 4 T/ T)s] (16)

replacing 2J/kp by T.. We want to expand this in smallup tos*

1/T.\? 1 /T\*
Aj = —NkgTIn|211+ (=) s2+ — (=) s*+--- 17
I B n|: { +2<T)S +24(T>S + }j| ( a)

1/T.\? 1 /T\*
= —NkgTIN2—=NkgT | = =) 52— — (=) s*+---|. 17b
z2 N B |:2<T)s 12<T)er } (17b)

The first term is just the free energy of the high temperature phase—in the mean field approximation simply
the entropy contribution of free spins. The second tersfisuggests that the free energy is lowered by a
nonzeros for any temperature! Clearly something has gone wrong. The problem is, as often happens in
mean field treatments, is that we have double-counted the interaction energy: by adding the free energy of
spin 1 in the mean field of its neighbors (including spin 2 say) and the free energy of spin 2 in the mean field
of its neighbors, including spin 1, we have included the 2 interaction twice. So we need to subtract off a

termU to correct for this

T.—T 1/7.\3
A:A,—Uz—NkBTInZ—NJd|:< - )f——(—) s4~-i|. (18)
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Figure 2: Specific heat of the Ising ferromagnet calculated in the mean field approximation.

Now we see that the free energy is lowered by a nonzeasoly for T < T.. Indeed minimizingA with
respect ta gives Eq. (0) as before, and then the reductiondrbelow T, for nonzeras is

3 T.—T\?
SA=—=NdJ|-= e 19
° ( - )+ (19)
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The power law dependenced4 nearT. is used to define thepecific heat expone# o ||~ witha = 0
in mean field theory.

The specific heat can be derived#$/dt or —Td?A/dT?.using the former gives

ds?
C=—-NdJ —. 20
T (20)
This is zeroaboveT,, jumpsto 3Nkg/2 atT,., and then decreases to zeroTas—> 0, see Fig.2. This is
consistent withC o |¢|7* with @ = 0.

General Remarks

The Ising ferromagnet showssacond ordetransition. Features are

1. A new state grows continuously out of the previous oneTfer T, the two states become quantita-
tively the same.

2. As a consequence of (1) the thermodynamic potentialg, S . .. are continuous &f, but not neces-
sarily smooth (analytic). In mean field theory the changes from the values just abskiewpower
law behavior in|1 — T/ T.|. Thederivativesof the potentials (specific heat, susceptibility etc.) simi-
larly show power laws (a jump such as@hcan be considered a power law 0), and willergeat 7,
if the power is negative.

3. ForT < T, equally good (i.e. energetically equal) but macroscopically different states exist. In the

Ising ferromagnet these states differ in the macroscopic magnetic mament=N . |s|. Thisis a

broken symmetrr-the thermodynamic states do not have the full symmetry of the Hamiltonian (here

all s; — —s;). Instead the different thermodynamic states befpvare related by this symmetry

operation. Since the states are macroscopically different, once one state is chosen, fluctuations to the

other state will not occur in the thermodynamic limit.

4. Because the states are quantitatively similaf as- T,, fluctuations involving admixtures of other
states become important here, so that mean field theoryatilin general be a good approximation
nearT.. The power law behavior of thermodynamic quantities féaurvives (and occurs both above

and belowT . in the more accurate description) but the powers or exponents are different than the values

calculated in mean field theory, and are no longer simple rationals.

5. Because of the power law singularities of the thermodynamic potentialsTheitris not possible

to classify phase transitions into higher orders (second, third etc.) according to which derivative of
the free energy is discontinuous (the Ehrenfest classification): we simply have first order transitions,
where the entropy, or volume etc. is discontinuous, and second order transitions where such variables

are continuous.

Analogies between liquid-gas and Ising ferromagnet transitions

Although we have approached these two transitions from different perspectives, there are in fact close
similarities. In particular the critical point in the liquid-gas system is directly analogous to the transition

temperature in the Ising ferromagnet. The relationship is displayed inFigrhe analogies are in fact
guantitative—the transitions at the critical points are said to béhig same universality clas§or example
the density discontinuity below the liquid-gas critical point growsfs- T)# whereg has the same value as



in the growth of the magnetization beldyin the Ising ferromagne¥ ~ (7. — T)#, and the compressibility
in the gas diverges nedy in the same way that the susceptibility does at the magnet transition!

The main difference between the two transitions is that the magnetic field is an externally applied, symmetry
breaking field that can be set to zero. In the liquid-gas there is no symmetry between the two stat@s below
(the dense liquid and rarefied gas), and the value gielding the transition (corresponding Bo= 0 in the
magnetic case) is nat priori obvious.

When is mean field theory exact?

Mean field theory is often a useful first approach giving a qualitative prediction of the behavior at phase
transitions. It becomes exact when a large number of neighbors participate in the interaction with each spin,
since then the fluctuations in the effective field indeed become small compared with the mean. This happens
in high enough spatial dimensidnor for long range interactions. Wandoutlescribes the infinite range Ising
model, and also introduces a useful formal approach known as the Hubbard-Stratonovich transformation,
demonstrating this. This is an advanced topic you can consult if you are interested.
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Figure 3: Analogy between Ising ferromagnet transition (left panels) and liquid-gas transition (right panels).
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