Physics 127b: Statistical Mechanics

Phase Transitions in Multicomponent Systems

The Gibbs Phase Rule

Consider a system withh components (different types of molecules) withhases in equilibrium.

The state of each phase is definedmyl" and thenn — 1) concentration variables in each phase.
The phase equilibrium at giveR, T is defined by the equality of chemical potentials between
ther phases. Thus there at€ér — 1) constraints orin — 1)r + 2 variables. This gives th@ibbs
phase ruleor the number of degrees of freedofn

f=24+n—-r

A Simple Model of a Binary Mixture

Consider a condensed phase (liquid or solid). As an estimate of the coordination number (number
of nearest neighbors) think of a cubic arrangement éimensions giving a coordination number

2d. Suppose there are a total f molecules, with fractionxp of type B andxy = 1 — xp of

type A. In the mixture we assume a completely random arrangemehtofd B. We just consider

“bond” contributions to the internal enerdy, given bys44 for A — A nearest neighborsg g for

B — B nearest neighbors, ardp for A — B nearest neighbors. We neglect other contributions to

the internal energy (or suppose them unchanged between phases, etc.). Simple counting gives the
internal energy of the mixture

U = Nd(x5eas + 2xaxpeap + x5¢pp)
= Nd{eaan(l—xp) + eppxp + [eaB — (€aa + €BB)/2]2xp(1 — xB)}

The first two terms in the second expression are just the internal energy of the urMnaxetiB,
and so the second term, dependinggr = cap — (€44 + epp)/2 can be though of as the energy
of mixing. An ideal mixture is one witlmnix = O.

There is also an entropy of mixing, which again considering a completely random arrangement of
A and B atoms in the mixture is

S = —Nk[xalnxs + xpInxpg].

Notice that this entropy of mixing is always positive, i.e. favors mixing, and the dependence on
xp has an infinite slope at the endpoints = 0, 1. We will ignore any other contributions to the
entropy.

To consider the question phase equilibria, it is easiest to lodk(&, T, xp) = U — TS + PV,
because in phase coexistence both phases have th&sard®, and this just leaves the dependence
onxp to investigate. In our simple model we will suppose the term is unimportant. The Gibbs
potential of the mixture as a function ©f for some fixedl" and P is shown in Fig.1.
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Figure 1. (a)G(xp) for an ideal mixture £mix = 0) or one withemix < 0. (b) G(xp) for emix
sufficiently positive and” sufficiently low that the entropy of mixing does not completely dominate.
The dashed line in (a) i& for the unmixed state. In (b) convexity arguments show that we must

replace the dotted portion of the curve by the common tangent.
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Figure 2: Phase diagram corresponding to Fig.



For anideal mixturesmix = 0, or one where the internal energy favors mixépg < O the situation
is shown in panel (a). The Gibbs potential is a convex functiongoés required, and the mixed
state exists for anyg, i.e. A and B are completelyniscible

On the other hand fasyix sufficiently positive, and if the temperature is not too high, the curve
for G given by our expressions fdf andS is nonconvexthe solid-dotted-solid curve). This is
unstable to phase separation, and the dotted portion must be replaced by the common tangent. Note
that the common tangent constructiorpigciselystatement that the Gibbs potential is given by
adding the Gibbs potential of the two phases as concentratjgresndx g2 present in the amounts

to give the total amount oB equal toNxp. (Prove this for yourself!) The amount of these two
phases is given by tHever rule the fraction of phaseg, for a system withB concentratiornx

is (xp2 — xp1)/(xp2 — xp1), €tc. At higher temperatures the entropy will dominate, and the curve
will again look as in panel (a). This gives is the phase diagram if'thexp plane (at some fixed
pressure) shown in Fig. Below some temperature complete mixing is not possible forzlfor

xp in the shaded region, the system will phase separate into macroscopic regionstofand B

rich solutions (e.g. at temperatufe the concentrations will beg; andxg2). Again the lever rule
tells us the amount of each solution for a given

Liquid-Gas Transition for Mixtures
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Figure 3: Gibbs potential plots for a simple liquid gas transition in a binary mixture.

As a very simple example of what can happen at the liquid gas transition in mixture, consider the
Gibbs potential plots in Fig3. The Gibbs potential for the liquid is taken to be as in Higand

that for the gas the same but without the internal energy contribution. At high temper@ttoes

the gas is lower thad for the liquid for all xz, and so the system is gaseous forxgll As T

is lowered,G for the liquid becomes lower relative to the gas, until it intersects the gas curve at
one endpoint (at a temperature corresponding to the higher of the boiling points of purgure

B—B in our example. The convex Gibbs potential curve is formed by the liquid curve atsgall

the common tangent corresponding to a mixed phase redioicli liquid in equilibrium with B

rich gas), and then the gas curve at latge
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Figure 4: Phase diagram for the liquid gas transition in an ideal mixture.

The phase diagram is shown in Fig.Note that if gas at some concentration (exgs) is cooled,

there is a range of temperatures over which liquid and gas are in equilibrium (with the gas being
more A rich and the liquid moreB rich for the example shown). For a one component system on
the other hand, the liquid-gas transition occurs at a unique temperature at #givars difference

is an example of the Gibbs phase rule. This is only the simplest of the various phase diagrams that

can be found.
Eutectics
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Figure 5: Phase diagram for the case with a large energy cost for mixing in the low temperature
phase.



If the Gibbs potential of the low temperature phase is “humped” as inlbighe phase diagram

is more complicated. This often occurs for the solid phase at a liquid-solid transition in a mixture,
since if A and B have different crystal structure there will be a large energy cost for the solution of
one in the other, and I've labelled the figure for this case. At the temperature corresponding to panel
(a) there are two common tangent constructions giving two ranggsfof phase coexistence (both
solid-liquid). In (b), at a lower temperature, there is a single rangg; @iving phase coexistence
between two solid phases with different concentrations.
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Figure 6: Eutectic Phase diagram

The phase diagram in this case is shown in Eighs usual shaded regions are two phase coexistence
regions, with the concentrations of the two phases given by the ends of the tie lines. For most
concentrations, if the liquid is cooled, eith&srich or B-rich solid will start forming, in equilibrium

with the liquid, over a range of temperatures. There is one particular concentrggidtnown as

the Eutectic concentration for which solidification occurs at a single temperature—the temperature
at which two solid phases and a single liquid phase are in equilibrium (cf. the Gibbs phase rule).

Again, there are many other possibilities for phase diagrams, particularly for liquid-solid transi-
tions, since many alloy states are found—concentrations (usually stoichiometric rations) at which
particular chemical compounds form. The iron-carbon phase diagram is notoriously complicated,
for example.
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