
Physics 127b: Statistical Mechanics

Lecture 3: First Order Phase Transitions

The van der Waals equation for a gas is[
P + a

V 2

]
[V − b] = NkBT . (1)

(The variablea is proportional toN2 andb toN , i.e. a = N2ā andb = Nb̄ with ā, b̄ constants).
It can be motivated by rewriting it in the form

P = NkBT

V − b −
a

V 2
(2)

TheV − b term comes from estimating the “free volume” available for the molecules by excluding
a hard core contribution, and thea/V 2 is a reduction in the pressure proportional to the density
squared, representing the attractive interaction of the molecules. InLecture 2we derived expressions
for ā andb̄ in terms of the pair potential.

The corresponding free energy is

A = Aideal −NkT ln

(
1− b

V

)
− a

V
(3)

with Aideal the ideal gas expression. (Actually, if we integrateP = −(∂A/∂V )N,T to getA there
is an integration “constant”f (N, T ), and we fix this by comparing with the ideal gas expression
for V →∞.) The second term is−T times theentropy correctionfrom the excluded volume, and
the third term is theenergy correctionfrom the attractive potential.

For T > Tc = (8a/27Rb) theP − V isotherms do not look much different from those for the
ideal gas. However, atT = Tc the isotherm develops an inflection point atPc = a/27b2, Vc = 3b.
The pointPc, Vc, Tc defines thecritical point of the liquid gas transition. Incidentally, in terms of
variables reduced to these critical values,Pr = P/Pc, Vr = V/Vc, Tr = T/Tc the van der Waals
equation takes the form (

Pr + 3

V 2
r

)(
Vr − 1

3

)
= 8

3
Tr (4)

so that all liquid gas systems should look the same in these reduced variables. This qualitative
statement is known as the law of corresponding states, and is actually more general than this
derivation from the van der Waals equation—it depends on the assumption of pairwise potentials,
and on there being a single energy and length scale parameterization of the interaction potential.

ForT < Tc theP(V ) curve becomes non-monatomic—the isotherm forT ' 0.94Tc is plotted in
Fig. (1).

We immediately recognize that the (red) dashed portion of the curve is linearlyunstablesince
(∂P/∂V ) > 0. As we discussed in lecture 11 last term, further constraints are given by the
convexityrequirement on the Helmholtz free energy, Fig. (2a). The dashed (red) portion of the
curve, where the curvature is negative, corresponds to the obviously unstable dashed portion of
theP − V isotherm. But now we see that the dotted (green) portion is also unstable by the chord
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Figure 1: Isotherms of the van der Waals equation.
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Figure 2: Thermodynamic potentials of the van der Waals system.

condition. We recognize from the discussion of the instability that the system willphase separate
into two macroscopic regions of high density (ρl = N/Vl) liquid and low density (ρg = N/Vg)
gas phase with properties given by the endpoints of the common tangent construction to theA(V )

curve. The fractionfl, fg (with fl + fg = 1) of the total numberN in each phase when the system
volume is at some volumeV1 in this mixed phase region is given by

flVl + fgVg = V1 H⇒ fl = Vg − V1

Vg − Vl . (5)

The free energy isA(V1) = flA(Vl)+ fgA(Vg) which is consistent with the physicalA(V ) curve
being given by thecommon tangentconstruction: the fullA(V ) curve is given by the solid (black-
blue-black) curve in the figure. It is now evidently convex, as required.

To return to theP(V ) curve it is useful do a Legendre transformation. SincedA = −SdT −PdV
the Legendre transform is

G(P, T ) = A(V )+ PV = A(V )− (−P)V . (6)
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This can be constructed by the intercept-slope interpretation of the transformation: asV varies on
theA(V ) curve slide a ruler along to make a tangent at the pointV , and read off the slope−P and
the interceptG. After some struggle you should be able to see that theG(P ) curve is as sketched
in the second panel of the figure. (PortionsI andII correspond in each figure, and the dashed
(red) and dotted (green) of the unphysical portions also correspond.) Note that thewholeof the
common tangent part of the physicalA(V ) curve maps into thesinglepoint of discontinuity of
G(P ), defining the unique pressure for liquid-gas equilibrium at each temperaturePlg(T ). Also
note that the physical portion of theG(P ) curve is concave, as required.

The equilibrium pressure can be identified on theP − V by noting that the integral of∂G/∂P
around the loop of unphysical solutions is zero∮

Plg

∂G

∂P
dP = 0=

∮
Plg

V dP. (7)

The final expression is the area between theP − V curve and theP axis. ThusPlg is identified
by theMaxwell equal areaconstruction (Fig.3) —Plg must be chosen so that the shaded regions
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Figure 3: Maxwell construction

(which contribute to
∮
V dP with opposite signs) must be equal. Thus the physicalP − V curve

is given by the solid (black-blue-black) curve, and the unphysical portions are now shown with the
same scheme as in the previous figures.

This type of transition is afirst orderphase transition. Notice the properties:

• The second derivative of the thermodynamic potential iszero(the straight portion ofA(V ))
or infinite (the cusp inG(P )).

• As a function of the extensive variableV there is a region (betweenVl andVg) of phase
coexistence. The densities of the extensive variables of the two phases in equilibrium are
discontinuousacross the transition (e.g. the density, and also the entropy density, Helmholtz
free energy density).
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• On the other hand the temperatureT , pressureP , and Gibbs free energy densityg = G/N , are
continuousacross the transition. Sinceg is equal to the chemical potentialµ, this corresponds
to the usual condition between two systems in contact under exchange of energy, volume,
and particles.

• The constraint that the chemical potentials are equal for the phases (labelled one and two)

µ1(T , P ) = µ2(T , P ) (8)

provides asingle constrainton the two variablesT , P , i.e. two phase coexistence occurs
along a line in theP, T plane—an example of theGibbs phase rule. Using this expression
at nearby points on the coexistence line and the thermodynamic identity

dµ = dg = −sdT + vdP (9)

with s = S/N the entropy density andv = V/N the volume per particle gives theClausius-
Clapeyronrelation for the slope of the coexistence line

dP

dT

∣∣∣∣
coexistence

= 1s

1v
(10)

with 1s = s2− s1 and1v = v2− v1.

• TheG(P ) curve (if we include the (green) dotted portions) appears to be simply the curves
for two different phases (liquid and gas) that “happen” to cross, and the system switches
to the curve of lowerG. The dotted (green) portions are often considered as describing a
“supercompressed” gas or “superexpanded” liquid (cf. supercooled water at the water-ice
transition). However more careful analysis [S. Katsura,Adv. Phys.12, 416 (1963),Physics
3, 255 (1967), A. F. Andreev,JETP18, 1415 (1964)] shows that this interpretation is only
qualitatively correct, and in fact there is anessential singularityof the free energy curves at
the junction point.

We thus get the picture of the phase transition shown in Fig. (4a).
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Figure 4: Liquid-gas transition in theV T , PT , andV S planes. The thintie lines in the mixed
phase regions link the two coexisting phases.
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We can alternatively ask what happens if we maintainN particles at a fixed temperature and change
the pressure rather than the volume. In this case, as the pressure is raised from the low pressure gas
phase, when the pressure reached the gas-liquid equilibrium pressure there will be adiscontinuous
jump in the volume as all the gas changes to liquid at this pressure. This is sketched in Fig. (4b).
Note that the two phases coexist along aline in thePT plane. The two coexisting phases also have
different entropy densities, and so in theSV plane the transition will appear as in Fig. (4c).

The van der Waals equation predicts that the liquid-gas transition disappears above a critical tem-
peratureTc. AsT approachesTc from below, the discontinuities in the density, entropy density etc.
between the liquid and gas become smaller and smaller, and disappear at a critical temperatureTc,
critical pressurePc. It is not too hard to show that the volume difference1v varies as(Tc − T )1/2.
Since the two phases are becoming very close in all their properties, fluctuations producing regions
of one phase in the other, which in turn contain regions of the other… become important. For
T > Tc there is no qualitative difference between the high and low density regions. Since we can
find a continuous path between regions we have identified as “gas” and “liquid”, this also shows
there is no qualitative difference between these two phases in general—a liquid is just a dense gas!

It is interesting to explore the consequences for the full dependence structure of the thermodynamic
potentials taking into account convexity requirements e.g.E(S, V ) at fixedN (Fig. 5).
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Figure 5: Plot ofE(S, V ) obeying convexity requirement showing “ruled” regions of two phase
coexistence and a planar region of three phase coexistence (the three phases correspond to the
corners of the triangle.

Convexity tells us thatE(S, V ) must have a “bowl” shape, however the bowl need not be smooth.
In particular, as well as the smooth regions with (positive) curvature in both direction, there can be
regions that can be ruled with straight lines (no curvature in one direction). These correspond to
the two phase regions looked at above. In addition there can be planar regions. These correspond
to three phase coexistence. An example (which may correspond to the gas-liquid-solid system) is
shown in Fig.5, together with its projection onto theSV plane. (Actually the figure is not quite
right: the conditions of positive temperature and pressure, i.e. the derivatives ofE with respect to
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Figure 6: Gibbs potentialG(P, T ) showing two and three phase coexistence. (Actually−G is
plotted.)

S and−V , has not been implemented—the bowl must be “tipped” to include this.)

The corresponding Gibbs free energy is shown in Fig. (6). The two phase coexistences correspond
to ridges, and the three phase coexistence to a single point called the triple point (atPt , Tt). The
result thatthreephases can coexist only at a point in theP, T plane (in a single component system)
is another example of theGibbs phase rule.

Similar remarks will apply at other first order transitions, although the appropriate variables will
be different. For example, for a first order magnetic transition, the magnetizationM replacesV ,
and magnetic fieldH replacesP . Also a the appropriate free energy depending on the intensive
variablesH andT , will be continuous at the transition.
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