Physics 127b: Statistical Mechanics

Lecture 3: First Order Phase Transitions

The van der Waals equation for a gas is
a
[P + W] [V —b] = NkpT. 1)
(The variables is proportional tavV2 andb to N, i.e. a = N2a andb = Nb with a, b constants).

It can be motivated by rewriting it in the form

. NkBT a

P = _ -
V—-b V2

(2)

TheV — b term comes from estimating the “free volume” available for the molecules by excluding
a hard core contribution, and tlag V2 is a reduction in the pressure proportional to the density
squared, representing the attractive interaction of the moleculesctare 2ve derived expressions

for a andb in terms of the pair potential.

The corresponding free energy is

b a
A=A,~deal—NkTIn <1_V> —V (3)
with A;z.q; the ideal gas expression. (Actually, if we integr&e= —(0A/dV )y r to getA there
is an integration “constantf (N, T'), and we fix this by comparing with the ideal gas expression
for V. — o0.) The second term is T times theentropy correctiorfrom the excluded volume, and
the third term is the&nergy correctiorfrom the attractive potential.

ForT > T, = (8a/27Rb) the P — V isotherms do not look much different from those for the
ideal gas. However, & = T, the isotherm develops an inflection pointfat= a/27h2, V, = 3b.
The pointP,, V., T. defines theeritical point of the liquid gas transition. Incidentally, in terms of
variables reduced to these critical valu@s,= P/P.,V, = V/V., T, = T /T, the van der Waals

equation takes the form
3 1 8
Pr+V_r2 Vr_é =§Tr (4)

so that all liquid gas systems should look the same in these reduced variables. This qualitative
statement is known as the law of corresponding states, and is actually more general than this
derivation from the van der Waals equation—it depends on the assumption of pairwise potentials,
and on there being a single energy and length scale parameterization of the interaction potential.

ForT < T, the P(V) curve becomes non-monatomic—the isothermffar: 0.94T, is plotted in

Fig. (1).

We immediately recognize that the (red) dashed portion of the curve is lineashablesince
(0P/0V) > 0. As we discussed in lecture 11 last term, further constraints are given by the
convexityrequirement on the Helmholtz free energy, Figa)( The dashed (red) portion of the
curve, where the curvature is negative, corresponds to the obviously unstable dashed portion of
the P — V isotherm. But now we see that the dotted (green) portion is also unstable by the chord
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Figure 1. Isotherms of the van der Waals equation.
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Figure 2: Thermodynamic potentials of the van der Waals system.

condition. We recognize from the discussion of the instability that the systerpléBe separate
into two macroscopic regions of high densigy & N/V;) liquid and low density g, = N/ V,)
gas phase with properties given by the endpoints of the common tangent constructioA (¥ jhe
curve. The fractiory;, f, (with f; + f, = 1) of the total numbeN in each phase when the system
volume is at some volume; in this mixed phase region is given by

[

SiVi+ fgVe=V1= fi = ()

The free energy igl (V1) = fiA(V)) + fsA(Vg) Which is consistent with the physical V) curve
being given by theommon tangentonstruction: the fuld (V) curve is given by the solid (black-
blue-black) curve in the figure. It is now evidently convex, as required.

To return to theP (V) curve it is useful do a Legendre transformation. Sihde= —SdT — PdV
the Legendre transform is

G(P,T) = A(V) + PV = A(V) — (=P)V. (6)
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This can be constructed by the intercept-slope interpretation of the transformatidruaa®es on
the A(V) curve slide a ruler along to make a tangent at the p@irdand read off the slope P and

the interceptG. After some struggle you should be able to see thatihe) curve is as sketched
in the second panel of the figure. (Portiohend/ correspond in each figure, and the dashed
(red) and dotted (green) of the unphysical portions also correspond.) Note thalhakeof the
common tangent part of the physic&a(V) curve maps into thaeingle point of discontinuity of
G(P), defining the unique pressure for liquid-gas equilibrium at each temperBiu(€). Also
note that the physical portion of th&(P) curve is concave, as required.

The equilibrium pressure can be identified on the- V by noting that the integral adG /o P
around the loop of unphysical solutions is zero

0G

5£—dp —0= f Vap. 7)
aP Pl

Prg

The final expression is the area between fhe V curve and theP axis. ThusP;, is identified
by theMaxwell equal areaonstruction (Fig3) —FP;, must be chosen so that the shaded regions
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Figure 3: Maxwell construction

(which contribute tof Vd P with opposite signs) must be equal. Thus the physital V curve
is given by the solid (black-blue-black) curve, and the unphysical portions are now shown with the
same scheme as in the previous figures.

This type of transition is &irst order phase transition. Notice the properties:

» The second derivative of the thermodynamic potentiaki®(the straight portion ofA(V))
or infinite (the cusp inG (P)).

* As a function of the extensive variable there is a region (betweevy andV,) of phase
coexistence The densities of the extensive variables of the two phases in equilibrium are
discontinuouscross the transition (e.g. the density, and also the entropy density, Helmholtz
free energy density).



» Onthe other hand the temperat@rgoressure?, and Gibbs free energy density= G/N, are
continuousacross the transition. Singeas equal to the chemical potentja] this corresponds
to the usual condition between two systems in contact under exchange of energy, volume,
and patrticles.

* The constraint that the chemical potentials are equal for the phases (labelled one and two)

ui(T, P) = ua(T, P) (8)

provides asingle constrainton the two variabled’, P, i.e. two phase coexistence occurs
along a line in theP, T plane—an example of th@ibbs phase ruleUsing this expression
at nearby points on the coexistence line and the thermodynamic identity

du =dg = —sdT + vd P (9)

with s = S/N the entropy density and= V /N the volume per particle gives tli@ausius-
Clapeyronrelation for the slope of the coexistence line

dP A
= == (10)
dT Av

coexistence

with As = s — s1 andAv = vy — v1.

» The G(P) curve (if we include the (green) dotted portions) appears to be simply the curves
for two different phases (liquid and gas) that “happen” to cross, and the system switches
to the curve of lowelG. The dotted (green) portions are often considered as describing a
“supercompressed” gas or “superexpanded” liquid (cf. supercooled water at the water-ice
transition). However more careful analysis [S. Katsédy. Phys.12, 416 (1963)Physics
3, 255 (1967), A. F. AndreeJETP 18, 1415 (1964)] shows that this interpretation is only
gualitatively correct, and in fact there is aasential singularityf the free energy curves at
the junction point.

We thus get the picture of the phase transition shown in Bg). (
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Figure 4: Liquid-gas transition in th€T, PT, andV S planes. The thirtie linesin the mixed
phase regions link the two coexisting phases.



We can alternatively ask what happens if we maintéiparticles at a fixed temperature and change

the pressure rather than the volume. In this case, as the pressure is raised from the low pressure gas
phase, when the pressure reached the gas-liquid equilibrium pressure there wikbedinuous

jumpin the volume as all the gas changes to liquid at this pressure. This is sketched uiblrig. (

Note that the two phases coexist alorigha in the PT plane. The two coexisting phases also have
different entropy densities, and so in th& plane the transition will appear as in Figcj.

The van der Waals equation predicts that the liquid-gas transition disappears above a critical tem-
peraturel,.. As T approache§,. from below, the discontinuities in the density, entropy density etc.
between the liquid and gas become smaller and smaller, and disappear at a critical tempgrature
critical pressureP,. It is not too hard to show that the volume differente varies a7, — 7)/2.

Since the two phases are becoming very close in all their properties, fluctuations producing regions
of one phase in the other, which in turn contain regions of the other... become important. For
T > T, there is no qualitative difference between the high and low density regions. Since we can
find a continuous path between regions we have identified as “gas” and “liquid”, this also shows
there is no qualitative difference between these two phases in general—a liquid is just a dense gas!

Itis interesting to explore the consequences for the full dependence structure of the thermodynamic
potentials taking into account convexity requirements &.¢8, V) at fixedN (Fig. 5).
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Figure 5: Plot ofE(S, V) obeying convexity requirement showing “ruled” regions of two phase
coexistence and a planar region of three phase coexistence (the three phases correspond to the
corners of the triangle.

Convexity tells us thak (S, V) must have a “bowl” shape, however the bowl need not be smooth.

In particular, as well as the smooth regions with (positive) curvature in both direction, there can be
regions that can be ruled with straight lines (no curvature in one direction). These correspond to
the two phase regions looked at above. In addition there can be planar regions. These correspond
to three phase coexistence. An example (which may correspond to the gas-liquid-solid system) is
shown in Fig. 5, together with its projection onto th€V plane. (Actually the figure is not quite

right: the conditions of positive temperature and pressure, i.e. the derivatiewiih respect to
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Figure 6: Gibbs potentiali (P, T') showing two and three phase coexistence. (Actualdy is
plotted.)

S and—V, has not been implemented—the bowl must be “tipped” to include this.)

The corresponding Gibbs free energy is shown in Fig. The two phase coexistences correspond
to ridges, and the three phase coexistence to a single point called the triple pdintfat The
result thathreephases can coexist only at a point in theT plane (in a single component system)
is another example of th@ibbs phase rule

Similar remarks will apply at other first order transitions, although the appropriate variables will
be different. For example, for a first order magnetic transition, the magnetizaticeplacesV,

and magnetic field? replacesP. Also a the appropriate free energy depending on the intensive
variablesH andT, will be continuous at the transition.
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