Physics 127b: Statistical Mechanics

Linear Response Theory

Useful references are Callen and Greetjednd Chandlerd], chapter 16.

Task
To calculate the change in a measuremgh(r)) due to the application of a small “field?" (¢) that gives
a perturbation to the HamiltoniaAH = —F (t) A. Here bothA and B are determined by the phase

space coordinates denotgl (), pV (¢) (e.g. B might be the electric currerijf":1 (e/m) p;). The time
dependence is given by the evolutionidf (r) , p" (¢) according to Hamilton’s equations. In statistical
mechanics we deal with an ensemble of systems given for example by a known distrip(#bns") at

t = 0. The expectation value at a later timis then

(B (1) = / didp" p (F*. p") B (F" (1) < 7. p" (1) < p") (1)

where the cumbersome notatiéh (1) < 7V means we must evaluaeat the phase space coordinate that
evolves from the valug” att = 0. For shorthand this will be denotei(z). We could equivalently follow
the time evolution of through Liouville’s equation and instead evaluate

(B (1)) = / dPNaFY o (7Y, 5V, 1) B (7. V) 2)
but the first form is more convenient.

Onsager regression

equilibrium
under H0+AH
p=py(rN,p")

H=H +AH H=H,

First consider the special case of a fo€€r) switched on to the valu€ in the distant past, and then
switched off at = 0. We are interested in measurements in the system=o0 as it relaxes to equilibrium.
Fors < O the distribution is the equilibrium one for tperturbedHamiltonianH (7V, p") = Ho+ AH,
with Hyp the unperturbed Hamiltonian, i.e. (for a canonical distribution)
o~ B(Ho+AH)

>N =N\ __
,o(r P )_ fd,‘:NdﬁNefﬁ(HoJrAH) (3)




so that introducing a convenient notation for the integral over phase 3paee/ dr"d p"

TrePUs B (7N GN)

(BO) = —————ram . (4)

Fort > 0 we let7N (¢), pV (¢) for each member of the ensemble evolve under the Hamiltonian, Apw
from its valuer™, pV att = 0,so that

(B (1)) = Tre PHTAI B (PN (1) « N, pN (1) < pV) )
) = Tre—B(Ho+AH) )

Note that the integral is ovef", " which we can denoté" (0), p" (0), andAH = AH (F¥, p") etc.
It is now a simple matter to expand the exponentials to first ordarfh(F small!)

Tre P01 — BAH)B (FV (1) < 7N, p" (1) < p")
Tre PHo(1— BAH)

(B (1) ~ (6)

to give

(B (1) = (B)o— B[(AH B (1))o — (B)o (AH)o] + O (AH)? (7
where <>(denotes the average over the ensemble for a system for which no perturbation was applied i.e.
po = e PHo/Tre=PHo  Note in this unperturbed system the Hamiltonian remaiggor all time, so that

one-time averages such @ (z)), are in fact time independent. Finally putting in the formAof7, writing
8B (t) = B (t) — (B), etc., and noticing thad (*", p") is equivalent toA (0),

AH =—FA (", p¥) = —FA(F¥ (0), p" (0)) = —FA (0), (8)
gives for the change in the measuremantB (¢)) = (B (¢)) — (B)g
A(B (1)) = BF (8A(0)3B (1)) )

where we have written the result in termssef = A — (A),.
This result which equates the time dependence of the decay of a prepared perturbation to the time
dependence of a correlation function in the unperturbed system prov@sfagier regression hypothesis

Kubo formula

For a generaF (¢) we write the linear response as

o0

A (B (1)) =f xag (¢, 1) F (t") dt’ (10)

[e¢]

with x 45 the susceptibility or response function with the properties

xag (1,1') = xap (1 — ')  stationarity of unperturbed system
xap (t —t')=0fort <t causality . (11)
Xas (—=f) = Xip (f) xag (1,1') real
The causality condition leads to interesting properties in the completane: for the sign convention | am

using for the Fourier transformg, (/) must be analytic, (has no poles) in the upper half plane. We will not
need this result here.



For the step function force turned offiat= 0

0
A (B (1)) = F/ xag (t —1')dr’ (12a)

—00

= F/Oo XAB ('E) dt . (12b)

Differentiating then gives thelassical Kubo expression

—BL(SA(0)SB(1))g t >0

Xxap (1) = { 0 £ 20 (13)

Connection with energy absorption: fluctuation-dissipation

Consider a sinusoidal force (t) = ReF e~ 2"i/" = 1(F e=27if" 4 ¢.c.). The rate of doing work on the
Al 2\ f
system is “forcex velocity” W = FA i.e.

o]

W= F(t)%/ x (t.1) F (') dr’ (14)

writing simply x for x44. Substituting in the sinusoidal form for the force, and rememberingyttvat’)
only depends on the time difference=r — ¢’

1 , d 4 o0 .

W = —(F,cefzf”f’ +c.c.) —eszff x (7) Ffesz’dr + c.c. (15)
4" dt oo

we recognize the integral as giving the Fourier transformg afo that the rate of working averaged over a

period is

= . 21~ -
W= —g2nif |Fe|"[X () = X (= )] (16a)
2 -y
=af |Fe|" X" (f) (16b)
where it is conventional to writg¢ = x’ + i x” with x’ the real part Rg (not the driviative!) andy” the
imaginary part Imy, and terms varying as*#"/! average to zero. Thus the imaginary partyofells us
about the energy absorption or dissipation.
But from the definition of the Fourier transform

X' (f) = /Oo x () sin(2rft)dt (17a)
=5 /OO % (BA(0)SA (1))gSIiN(2rft)dt (17b)
0
=B 2rf) /OO (BA(0)8A (1))pcos(2r ft)dt (17c¢)
0

where we have used the Kubo expression BE) for x = x4 and then integrated by parts. Finally we
recognize the integral as giving the spectral density @ifictuations, so that (including necessary factors)

X" (f)

Ga(f) =4kpT o f

(18)

relating the spectral density of fluctuations to the susceptibility component giving energy absorption, i.e. the
classical fluctuation-dissipation theorem



Langevin Force

If we suppose the fluctuations #derive from a fluctuating Langevin contributidti to the forceF we can
write

A(A @) = /OO x (t,t)F (t)di" . (19)

Since the Fourier transform of a convolution is just the product of the Fourier transforms the spectral density
of (A(z)) is given by

Ga(f) =X (DIPGF () (20)
and using the expression f6t, derived above leads to
1 1
G =4k T —— | - . 21
P =4 2ﬂfm[ zm} &)

Instead of the susceptibility we can introduce itmpedanceZ = F/ (A) so that
1 1

2rif x (f)

Then defining the “resistance® (f) = ReZ (f) we can write the spectral density of the fluctuating force

as

Z(f)=~

(22)

Gr(f)=4ksTR(f) . (23)

The analogy with the Johnson noise expression should be apparent.

Note that the derivations have been classical, so we arrive at the classical version of the fluctuation-
dissipation theorem, the force expression etc. In a quantum treattreemd B, as well asH areoperators
that may not commute, so that we have to be more careful in the expansion of the exponentials. THg)s Eq. (
will involve commutators of operators. The simplest form of the expression is to define a slightly different
susceptibilityy”(t) = (2i) Y[ x (1) — x (—=1)] (the Fourier inverse of the dissipative paft( f)) which is then
related to the commutator-correlation function

1
Xap(t) = o ([A), B(O])o, (24)

whereA, B are Heisenberg (time dependent) operators. The change td&ds @uite simple: make the

replacement
hf hf
T — —=coth 2
ko7 — " cor (szT) (25)

which can be interpreted as taking into account the Bose occupation factor of the modes. The quantum
approach was pioneered by Kuli#},[and the set of ideas are often called the Kubo formalism.

Applications to LIGO

The fluctuation-dissipation theorem is an important tool in understanding the noise that limits the sensitivity
of the LIGO experiment—at the operation frequency thermal noise is the dominant source. Therefore:
understand the dissipation and you understand the noise. Some references that should now be readable are:

1. A. Abramovici et al., Scienc56, 325 (1992) — general review of LIGO

2. P.R.Slauson, Phys. Rev4R) 2437 (1990) — discussion of mechanical dissipation and noise (available
onling


http://cornell.mirror.aps.org/abstract/PRD/v42/i8/p2437_1

3. A. Gillespie and F. Raab, Phys. Lett180, 213 (1994) — theory and measurements of suspension
losses and noise in a LIGO test bed

4. Y. Levin, Phys. Rev. B7, 659 (1998) — application of the fluctuation dissipation theorem leading to
a novel calculation of mass-mode noise (availaiitng)

The paper by Yuri Levin, who was a student here a few years ago, is a particularly nice application of the
ideas we have been talking about, and | strongly urge you to read it.
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