Physics 127b: Statistical Mechanics

Brownian Motion

Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid.
The particle must be small enough that the effects of the discrete nature of matter are apparent, but
large compared to the molecular scale (pollen in the early experiments, various plastic beads these
days). Itis a convenient example to display the residual effects of molecular noise on macroscopic
degrees of freedom. | will use this example to investigate the type of physics encountered, and the
tools used to treat the fluctuations.

Random Walk

The first observation of Brownian motion is that the particle under the microscope appears to
perform a “random walk”, and it is first useful to study this aspect in its simplest form.

Lets consider first a one dimensional random walk, consistingjomps of£/ along thex axis.

We taken to be even (the odd case is essentially the same, but differs in minor details). For the
particle aftem jumps to be at = ml there must have beeln(n + m) forward jumps, an(%(n —m)
backwards jumps (in any order), andmust be even. The probability of arriving at= ml is
therefore

n!
pn(m) = . (l)
[%(n - m)]! [%(n + m)]!
For largem, n Stirling’s approximatiom! ~ (2rn)Y/?(n/e)" gives
pu(m) = e, (2)
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This is a Gaussian probability centered aroune: O (the most probable and mean position is the
origin) and the mean square displacen(e'r?t} =n, or

(x2> = nl®. 3)

For largen the discreteness of the displacements is unimportant compared to the root mean square
distance of the walk. Transforming to a continuous variabknd a probability density(x, ¢)

usingp, (m) = p(x) x 2[ (since the interval between the discrete resulfsis= 2/) and introducing

time supposing there arejumps in timer

1 x?
pen = ——exp( 5 ) @
where we have written
nl?/2t = D. (5)
We recognize that this is the expression for diffusion, witkatisfying
P _pYP =0 =50 ©)



with the diffusion constanD. In terms ofD

(%) = 201, (7)

These results are readily extended to 3 dimensions, since we can consider a walk with steps
(&I, £1, +1) for example, so that the walk is the product of walks in each dimension. The mean
square distance gone aftewalks is agair{r2) = nL? with L = +/3/ the length of each step. The
probability distributionp(x, r) satisfies the & diffusion equation

ap 1 r?
9 (An D132 eXp(‘m) ®

with 72 = x? 4+ y? + z2. This equation is simply the product of thre¢ diffusion equations with
D = nl?/2t as before. The means square distance is

(r?) = 6Dt. (9)

(The results in @ can similarly be constructed.)

The fact that the mean displacement is zero, and the mean square displacement grows linearly in
time can be derived by very simple arguments. Lets consider the two dimensional case of a random
walk consisting of: vectors of length but with arbitrary angleg; taken from a uniform probability
distribution. The total displacement in thalirection is

X =) scosh. (10)

Clearly (X) = 0 since cos; is equally likely to be positive or negative. On the other hand

=[S0} o ”

= 52 <Z (COS@,-)2> = ns?/2 (12)

where we have used the fact tlé@i,#i COSsH; cosej> = 0 since again each césis equally likely
to be positive or negative. Thus the mean square distance is

(R?) = (X2 + Y?) = ns”. (13)

This specific result is useful in adding complex numbers with random phases: the average amplitude
is zero, and the mean square magnitude (the “intensity”) scales linearly with the number of vectors.

Some general nomenclature

The positionx (¢) in a one dimensional random walk forms a one dimensicaralom process-in
general a scalar function(r) for which the future data is not determined uniquely by the known
initial data.



The random process is in general characterized by probability distribytions . . . such that

Pn(Y1, 115 Y2, 12 . .5 Y, t)dyidyz . .. dyy, (14)

is the probability that a single process drawn from the ensemble of processes will take on a value
betweeny; andy; + dy; atry etc. The differenp,, are related by

00
f pndyj — Pn-1. (15)
00

Ensemble averages are determined by integrating over the appropriate distribution, e.gnéarhe
and thetwo point correlation function

(y(11)) =/ y1p1(y1, t1)dya, (16)
(y(t)y(t2)) = / / y1y2 p2(y1, 11; y2, t2)dy1dy>. (17)

Higher order correlation functions require the knowledge of higher order distribution functions. In
the random walk we have just lookedat

A stationaryrandom process is one for which thpg depend only on time differences, or

Py, i+ Ty 24+ T o Yoty +T) = pu(V1, 15 Y2, 12 -5 Vs By)- (18)

| have chosen to formulate the random walk as starting a particle from a particular position at time
t = 0, so thatx(¢) is not stationary. Alternatively we could have considered a stationary process
(e.g. the field of vision of a microscope with many Brownian particles) and then calculated the
conditional probabilityP2(x1, t1|x2, 2) which is the probability of the particle being.gtat timer,

given that it was at; attimer;. ThenP»(0, O|x, ¢) takes the diffusive form that we have calculated
and thep,, all just depend on the time differencegi(x, ¢) is just constant, for example).

Means and correlation functions are defined with respect to the ensemble average. For a stationary
random process we usually assuengodicity, and replace the ensemble average by a time average,

e.g.
T/2

N |
(y) =y = TlinooT/_T/zy(t)dt- (19)

The probability distribution for the random walk is a Gaussian functionGa\ssian process
general is one in whichll the probability distributions are Gaussian

n

PaVL 115 Y2, 125 Yo 1) = AEXD| = D (v — (») Ok — () (20)
j=lk=1

where(y) is the mean of, « j; is a positive definite matrix and is a normalization constant. For
a stationary procesy) is time independent andand A depend only on time differences.

Gaussian processes are important in physics because agritral limit theorem if

1
y==2 0 (21)
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with y; arandom process or variable with arbitrary distribution but with finite nfeaand variance
Gyz then forN largeY is a Gaussian process or variable

_ 2
p[u} @2)

p(Y) = 202

1
,/2710)%

with (Y) = (y) andoy = ay/«/ﬁ. The central limit theorem is why the Gaussian distribution
of the random walk is independent of the details of the step (e.g. fixed length, or varying length)
providing the mean is zero and the variance is finite.

Equation ) for the time evolution of the probability distribution is actually thekker-Planck
equation for this random process. We will return to this topic in more detail later.

Spectral description of a random process

For a conventional function(z) a convenient definition of the Fourier transform is

o0
yuv=f Y (e 1, (23a)
_gg |
ﬂ0=/ F(fe 2 df. (23b)
—00
The correctness of the inverse is shown from the result
/ d2 gy — fim 2N =48(y). (24)
— X—00 Ty

For a real functiory(r) we havey*(f) = y(—f).

For a stationary random process the integral defining) diverges, so we instead define the
auxiliary process

yr(t) = { y(ot) _T/oir;:wfsg/z (25)
and then use the finitgy (f).
Parseval’s theorem tells us
1 T/2
jm [ o= im 2[5 okar (26)

Here and elsewhere we ugg&( /) = y(— f) to restrict the frequency domain to positive values.
With these preliminaries in mind, we define the spectral density of the random praceas

2

T/2
Gy(f) = lim —’ f [y(t) — y]e'* /" dt (27)

T/2

wherey is the time average ovéat. Why do we use this expression? Lets suppose that the mean
has been subtracted off f soy = 0. The quantity inside th¢| is the Fourier transform of the
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processyr(t) . How does this grow wit'? We can estimate this by supposing the intefvab

be formed ofV subintervals of length. The Fourier transforniy is then the sum oWV transforms

v, of processey, (r)defined over the interval. For a random process we would expect each of
the y,; to be of similar magnitude, but with arbitrary phase, since the latter depends sensitively on
the phasing of the’?™/* with respect to the time start of the signal. AddiNgcomplex numbers

with random phase gives a number of magnitade/N and random phase. Thus the transform

of y(t) — y grows asy/T and the phase varies over all valuesTashanges. The spectral density

G, (f) is constructed to bsndependent of Tand to contain all the useful information. Parseval’s
theorem now gives us

00 . 1 T/2 ) )
| Gundr = im 5 [ v - 512 = o (28)

0 T—oo T J_1/2
so that the frequency integral of the spectral density is the variance of the signal.

The spectral density is directly related to the Fourier transform of the correlation furdGtion.
Let's set the mean to zero for simplicity. Then, using assumption of ergodicity to replace the
ensemble average by a time average, the correlation function is

1 T/2
Cy(r) = lim — dty(t)y(t + 1) (29)
T—ooo T -T/2
1 [o©
= lim — dt yr@®)yr(t + 1) (30)
T—00 —00

where the small error in replacindz + t) by yr (¢ + t) is unimportant in the limit. Now inserting
the Fourier transforms and using(f) = y(— f)

. 1 o o o /~ ~ N —i2nf't i27 !
C,(x) = lim —/ dr/ df/ dF 5 (F)ir(fe 2 T2+ (31)
T—oo T J_oo —00 —00

Thet integrations i$(f + f7), and usingy*(f) = y(— f) gives

Cy(r) = lim_ % /_ Z df 5r(f)1P e 2T (32)
= jim 2 [ ap 5P cos 2y 33)
— /Ooo G, (f)cos2r fr)df. (34)
Thus we have the inverse pair
Cy(t) = /OOO Gy(f)cos2n fr)df (35a)
Gy(f) = 4/000 Cy(t) cos2r fr)dt (35b)

(sinceC, andG ; are both even functions, we have written the results as cosine transforms only
involving the positive domain). These equations are known ag/fieaer-Khintchingheorem.



A particularly simple spectral density is a flat one, independent of frequency. We describe such
a random process as beindpite The corresponding correlation function is a delta function, i.e.
no correlations except for time differences tending to zerp. One strength paranetereded to
specify the force

GF(f) =&, (36a)
Cr(t) = %5(:). (36b)

The Einstein Relation

Einstein showed how to relate the diffusion constant, describing the random fluctuations of the
Brownian particle, to its mobility:, the systematic response to an externally applied force.

Under an applied force-dV /dx the drift velocity of the particle is (the definition of the mobility)

dv
= —pu—. 37
Ud I (37)
For a sphere of radius in a liquid the viscosity; the mobility is given by the Stokes expression
w = (6rnauy)~1, and sou is related to thelissipationin the fluid.

Consider now the thermodynamic equilibrium of a density) of independent Brownian particles
in the potentialV (x). We can dynamically understand the equilibrium in terms of the cancelling
of the particle currents due to diffusion and mobility

d dv
o™y (_M_) o (38)
dx

Equilibrium thermodynamics on the other hand tella s) oc exp[—V (x)/kT]. Substituting into
Eq. (38) gives the Einstein identity
D =kTpu. (39)

Note the use oéquilibriumconstraints to relatductuationquantities (the diffusion constant which
gives us(xz(t))) anddissipationcoefficients [t or ). This is an example of a general approach
known adluctuation dissipatiotheory, that we will take up again later. The fact that the fluctuations
and dissipation of a Brownian particle are related should not be unexpected: both are a reflection
of the molecular buffeting, the dissipation given by the net force due to the systematic component
of the collisions coming from the drift of the particle relative to the equilibrium molecular velocity
distribution, and the fluctuations coming from the random component.

Fluctuation-Dissipation Theory

The relationship between the dissipation coefficient and the fluctuations is made more explicit by
directly evaluatingD in terms of the fluctuations producing the random walk

D = lim 2—1t ([x(r) — x(0)]?). (40)



Expressing the displacement as the integral of the stochastic velocity

x(t) — x(0) :/ u(r)dry (41)

0

leads to L gt .
D = lim —/ dt1/ dto (u(t)u()), (42)

t—00 2t Jo 0

which depends on theelocity correlation functionThe integrand is symmetric m, t» and we can
replace the integral over the square by twice the integral over the triangle G< ¢, 11 < 12 < t,
and then introducing the time differenee= 1, — 11

o1
D = lim -

t—o0 t

t t—11
/ dn / dr (u(i)uliy + 1)) (43)
0 0

Since the correlation functiofx(1)u (1 + 7)) decays to zero in some finite relaxation timeas
t — oo the limit of the second integral can be replaced by infinity for almost all values iaf
the first integration. Furthefu(t1)u(t1 + 7)) = C,(7) is independent of; (u(¢) is a stationary
random process if external conditions are fixed). Hence

p= [ dr wOuw) (44)
0

and L oo
= /0 dr (w(Ou()) (45)

directly relating adissipation coefficienio acorrelation function
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