Physics 127b: Statistical Mechanics

Boltzmann Equation II: Binary Collisions

Binary collisions in a classical gas

Scattering out . Scattering in

Center of
Mass Frame

Figure 1: Binary collisions in a gas: top—Ilab frame; bottom—centre of mass frame

Binary collisions in a gas are very similar, except that the scattering is off another molecule. An individual
scattering process is, of course, simplest to describe in the center of mass frame in terms of the relative
velocity V= v1 — vo. However the center of mass frame is different for different collisions, so we must
keep track of the results in the lab frame, and this makes the calculation rather intricate. | will indicate the
main ideas here, and refer youReif or Landau and LifshitZor precise discussions.

Lets first set things up in the lab frame. Again we consider the pair of scattering in and scattering out
processes that are space-time inverses, and so have identical cross sections. We can write abstractly for the
scattering out from velocity; due to collisions with molecules with all velocitiés, which will clearly be
proportional to the numbef (v1) of molecules ab; (which we write asf;—sorry, not the same notation

as in the previous sections whefgdenoted the deviation of from the equilibrium distribution!) and the

number f>d3v, = f(v2)d>v, in each velocity volume element, and then we must integrate over all possible
outgoing velocities; andv,

df (vy)
dt

_ f / / W(T,, Ty B, Bo) fofodPvad®, v, (1)
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Similarly for the scattering in from collisions between molecules with velocitjeend v, which collide to



give outgoing velocities; andv,

df (vy)
dt

- / f / Wi, a: B, B) £ FdPvad vl d®, ©
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(with f{ = f(v)) etc.). The space-time inversion symmetry tells us that
w(ﬁ:/]_s 5/2, V1, Up) = w(l_}]_, Uo; 515/2), 3)

so that

df (vy)
dt

_ / / / (B, B 1. 52) (fLfs — fufo)d%vadidu). @)
coll

These expressions are good for setting up the problem and making general arguments, but there is a 9
dimensional integral to do, and the scattering functiois comprised of many delta functions that express

the conservation of energy and momentum (onlyeay limited set ofv; and v, are consistent with the
incoming velocities) that are complicated to write down directly in terms of the lab-frame velocities. We
consequently transform to the center of mass frame, defining center of mass and relative coordinates

?C=M, R=F,— P (5)
mi + my
the corresponding velocities
¢ =dr./dt, V =dR/dt, (6)

and similar primed expressions in terms of the outgoing velocities. The conservation laws are now easy to
state
c=<c, |V , @)

and we can simply describe the scattering rate, which in the CM frame is entirely analogous to scattering off
a fixed center, in terms of a differential (angular) cross section

=‘17/

scattering rate into solid ang&2,. = ny. Vo (B¢, V)d 2., (8)

with n,. the density of scatterers, here the particles of velagity

Thus we can write the collision term:

df (vy)
dt

= / / [f@Df @) = f@)f @] 01 = Tal 0 (191 = V2l , Osc) dQed®T2 (9)
coll 172 Qe
with the geometry as shown in Figjando the differential cross section in the center of mass frame. So now
we are doing the integral in the centre of mass frame for &aeba much simpler integration—but must

evaluatev; andv, in terms ofvy, v, andd,.. Thus the collision term can be evaluated as a four dimensional
integral

For more details consuReif chapter 14 and particularly §14.8.

Boltzmann’s H-theorem

An interesting application of the Boltzmann equatio®B@tzmann’s H-theoremBoltzmann showed from
the Boltzmann equation that the quantify(not the Hamiltonian!) defined by

H= /d3vflnf (10)
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never increases
dH -

dr —
Thus, within the limitations of the Boltzmann equatient plays the role of a generalization of the entropy
(actuallyS/kT)toarbitrary distributions, notrestricted to ones characterized by macroscopic thermodynamic
variables.

0. (11)

A sketch of the derivation is as follows. The time derivativekbfs

dH B 3 %
VTR T o (L+1In f1) )
N // / / w(ﬁi’ 1_5/2’ 61’ 1_52) (fifz/ - fle)(l + In fl)d3v1d3v2d3v1d3v/2 (13)

Using the symmetry of the scattering process under spatial inversions, time reversal, and interchange of the
two incoming (and outgoing) molecules this can be written in four different ways, with all terms the same
except(l+ In f1) is replaced by1 + In f2), —(1 4+ In f]), —(1 + In f;) respectively. Summing these four
expressions then gives

dH 1

=3 / / / / w3, By 5. 52) (0 fLf — 0 fufo) (FLfs — fufe) dPudPuoad®id®y  (14)

But for any positivex andy it can be seen that
(Iny—=Inx)(y —x) >0 (15)
with the equal sign only valid foy = x. Henced H/dt < 0, and the equality only holds if] f5 = f1 f.
The equilibrium conditionf] f; = f1f2 is equivalent to
Infi+Inf=1Infi+Inf, (16)

i.e. the sum of quantities before the collision equals the sum of corresponding quantities after the collision,
for all collisions. Since the equilibrium distribution must also be isotropic, so that the momentum vector
cannot occur in the distribution, this shows that the equilibrium distribution must be the exponential of a term
proportional to the kinetic energy of the particle, i.e. the distribution must be the Maxwell distribution, and
then the proportionality constant fs

Conservation laws and hydrodynamic equations

For quantities that are conserved in the collisions, such as mass, momentum and energy, if we sum these
guantities over all the molecules, we can derive macroscopic conservation laws which are the equations of
hydrodynamics and heat transport. The conservation laws take the form of the time derivative of a density
given by the divergence of the corresponding current or flux. These currents can then be evaluated first
using the equilibrium distribution functiofy and then suing the correctigh coming from deviations from
equilibrium driven by gradients of the temperature, pressure or chemical potential, and velocity.

Conservation laws
First consider the mass. Then

/d3vm fE, 0,0 =n@E, m = p(¥, 1) (17)
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with p the mass density. We can use the Boltzmann equation

of o F f_df

V== — = (18)
ot ox m 0v  dt |y
to derive the equation of motion for the density
d . 0 - 9 d
—pz—/dsvmv-—{—/d3vF-—{+/d3vm—f (29)
ot ox ov dt | o

The last term on the fight hand side is zero because mass is conserved in the collisions, the second term
—F - [d®V,f is also zero, and the first term4isV - g with g = pii the momentum density

gx. 1) = /d%mﬁ f(x,0,1) (20)

andu the average velocity
[d3T f(X,0,1)

(X, 1) = —— 21
neen [d3v f(X,9,1) (1)
Thus we have derived the macroscopic conservation law for mass
0 = -
a_[; 4V - (pit) = O. 22)

Now we investigate the consequence of the conservation of momemiélimthe collision. Integrating over
the velocity distribution gives

d(pu L f (X, 0,1 . 0 = 0
M:/dsvmvm:_/dsvmvv._fj_/dsv,,F._{ (23)
ot dt ox av
where again the collision term drops out. This simplifies to
d(pu - . -
(g)t”)=—v.<mfd3vvvf)+q> (24)

(you might want to write this in component notation if the double vector is confusing) where integration
by parts is used in the last term, addx, 1) = F(X, t)n(X, t) is the force per unit volume. Now write the
molecular velocity in terms of the mean velocityand a correctiorV with zero mean

V=i+V, (25)
with [ @3V f = 0. Then
/d3v55f=nﬁﬁ+/d3v\7\7f, (26)
since the cross term gives zero. Thus E4) feduces to
8(;);7) LV i =d -V F 27)
or in component form
8(,;)tui) + %(puiuj) =d; — %Elj (28)



. e
(repeated indey summed over) withE themomentum fluer stress tensor

[V VVfG i+ V1)
[d3V fG,i+V, 1) = eVl (29)

zﬁzm/fvwwﬂiﬁ+in=mn

Ifin Eq. (29) f = f. (V) the equilibrium Maxwell-Boltzmann distribution for the velocity shifted about the
mean velocityi, then the off diagonal terms &f;; are zero, and the diagonal terms involve the mean square

molecular velocity fluctuation which just gives us the presure;; = P§;; with P = nm (V?2) = nkpT .

Note that Eq.22) can be used to rewrite EQR) in a form that might be more familiar

du > S <>

—=®d-V. 3, 30

P (30)
with g 8

u u 45 = N

E;=57+Qwv)u (31)

the advectiveor Langrangianderivative ofu.

A similar result can be derived for the energy density, since energy is conserved in the binary collisions, but
I will not go through the calculation here.

Transport Coefficients

There are corrections to the stress tensor if the gas is not in equilibrium. In particular if the mean vidkcity

not uniform, there argiscous forceghat tend to eliminate velocity gradients. These correspond to terms in

the stress tensor depending on spatial derivatives of the velocity. We can calculate these terms by evaluating
the correction termg; to distribution function that are proportional to the velocity gradient (for small enough
gradients) using the Boltzmann equation, and then substituting intd?B)q.The calculation off; follows

the same approach as in the calculation of the thermal conductivity example in the previous lecture, except
here we are considering binary collisions and there collisions off impurities. And now the local equilibrium

to which the collisions tend to restore the distribution (momentum is conserved in the collisions!) is the
Maxwell distribution at fixed temperature about a mean velogify, ¢) that is a function of position and

time in general.

We calculatef; as the solution to

dfo - 9dfo _df1

—_ + V- — ~

ot 0x dt |con
where to lowest order we use the equilibrium distribution on the left hand side, and we have set the external
force to zero. In full generality the equilibrium distribution is

(32)

- o _Be: —Bm(5—in2
foD, %, 1) Pt o= Bein(T) p—Bm(V—i)*/2 (33)

wheresi (T) is the internal energy of the molecule (rotation and vibration etc.).x[lh&ependence ofy
arises because, T, andu defining the local equilibrium are functions of position and time. Thus we can
evaluate the left hand side of EQZ). When doing this, it is convenient to make a Galilean transformation
to a frame of reference moving with the local mean velogity.e. seti to zero (but not derivatives of)
after taking the derivatives.

Let’s first look at the time derivative term. We ugeandT as the variables defining the local state of the
gas, rather thap and7. Then taking logs of Eq.33) and differentiating gives

kT 9 d —&, 9T (du\ 9P . Qi
keTdfo _ (k) _pm—en|OT  (Om) BP o ou (34)
fo ot oT ) p T ot oP ), ot ot
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with &, = gjnt + %mvz, the energy of a particle of speed This expression can be simplified using the
thermodynamic identitie&./dT) , = —s and(3./d P)r = 1/n, with s the entropy per particle and*
the volume per particle, and then introducing the enthalpy per paftiele. + T's, to give

kgT 0fo & —hdT  10P . ou

2o _ 4z C— 35
fo o1 T ot o " (35)
Processing the spatial derivative in the same way gives the corresponding result
kgT . 0 —h_, - 1. -
%v-a—?: SUT v-VT+;v-VP+mvavﬁualg (36)
with u,g the shear in the velocity
1 /0u, Oug
== — 1, 37
Hap 2 <8uﬁ + 8u,1) (37)

(it is convenient to write the expression in terms of this symmetrized derivative).

The time derivatives in Eq.36) result from the energy, mass, and momentum currents flowing due to the
spatial derivatives of', P, andii. Since these terms appear as the driving terms in the Boltzmann equation, to
leading order in the departure from equilibrium we can evaluate these currents for the equilibrium distribution
fo- For the velocity term this corresponds to using just the pressure telri.m
ou L o= 1- 1-
& G Vi- VP _——vVp (38)

Jat nm nm
where the last step is because we are in the frame of the local velocity, soth@t The temperature and
pressure time derivatives are evaluated from the density conservation equati®®) Eagdin settingg — 0)

on -

— =-—nV-u, 39
P nv -u (39)
and from the entropy equation (remember we are evaluating these derivatives in equilibrium so the entropy
is constant)
0 0 oP 0 oT
Zoo=(=) T +(Z2) &= (40)
dt P ), ot aT ) , ot

Using (ds/0T)p = c,/T with cp the specific heat per particle at constant pressure, the Maxwell relation
(3s/dP)p = —(dv/dT)p, and them = v™! = P/kgT andcp — cy = kp for the ideal gas, Eqs3¢) and
(40) together give

P S

o1 = —nkpT(cp/cv)V - u, (41)
oT -

3 = —(kgT/cv)V - u, (42)

with ¢y the specific heat per particle at constant volume. Finally combining B&s36, 38,41, 42) gives
the driving term in the Boltzmann equation

. 2 1 - -
(v-V)T +mvavﬁ(ualg — §8algv -u) +

0o - 2fo _ fow) [ & —h
ot ox kgT T

h—Tcp — &, + (Cv/kB)%mUZ N
V-ul.
(cv/kp)
(43)
Note that the velocity gradient matrix haa been written in terms of a transverse part (with zerajgaee)
2844V - i and a longitudinal part (the trac®)- i.

Using Eq. 82) and some treatment of the collisions, we can calcufaté), which will have contributions
proportional to the gradient®T’, u,z — %Saﬂv -u, andV - u appearing in Eq.43). (Note that thev P terms
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actually cancel, and do not appear.) These may then contribute to the expressions for the stress tensor Eg.
(29), and energy flux (not written down).

For example consider the stress tensor (we evaluate the integrat t soV — v)
Eij = P8ij —I—m/d3v Uil}jfl(l_j). (44)

For illustration we evaluate the collision term in the relaxation time approximation, so that the Boltzmann
equation gives

N

h—Tcp—ey+ (cv/kg)%mvz6
(cv/kp)

frm e P T G e vt — 805 - ) +
1= kBT T aVp\Uap 3 af
(45)
The term inf; from the temperature gradient is oddurand so does not contribute in the integral .
The velocity gradients lead to viscous contributions to the stress tensor. For example the second term in Eq.
(43) will give a contribution

1 - .
EZhear: —2n(u;j — §5ijv u), (46)

with n the coefficient okhear viscosityln addition there is a contribution from - i
ZZ!;)ngitudinal _ _4_6 i (47)
where¢ is known as the coefficient glecond viscosity

Using similar methods, the equation resulting from the conservation of energy can be derived. The derivation
is complicated because many terms, including the kinetic energy of the mean vélm‘t’t)contribute tothe
energy density that is carried along by the flow velocity. The additional dissipative energy current coming
from the nonequilibrium correctiogi, on the other hand is quite simple, arising just from#h&’ T term in

Eq. @3), since the other terms have the wrong symmetiy. ilihis leads to a term in the energy current (heat
flow) proportional to—k VT with « the thermal conductivity that again is readily evaluated using the simple
relaxation time approximation, and that in principle can be evaluated using more realistic descriptions of the
collisions.

Thus we may completely derive the fluid dynamic equations for the gas with a prescription for how to
calculate thdransport coefficientsuch as the viscosity that arise in the equations in terms of the solution

to the Boltzmann equation. This solution may still be hard to do accurately, and simple approximations,
such as the relaxation time approximation, are often used. However, in principle, knowing the two particle
molecular scattering cross-section allows a complete calculation of the transport coefficients. The form of
the equations, e.g. the expressions for the viscous contributions to the stress tens@s, £qdsare actually

valid more generally, applying to dense gases and liquids. However in these cases the Boltzmann equation
cannot be used to evaluate the transport coefficients.

The full derivation of the hydrodynamic equations from the Boltzmann equation is quite involved, but the
most important results can be derived relatively simply. For example, of the coefficient of shear viscosity it
is clear from symmetry arguments, that the time derivative téifg)$: do not contribute in Eq.32)—these

terms do not have the right symmetryiinto contribute to the stress tensor. It is then straightforward to
extract the contribution tg; resulting from a particular velocity gradient, edy, /9z, and then to calculate

the contribution to the stress tensor. This is the subject of a problem in the homework. Similarly the thermal
conductivity can be extracted by focussing on the temperature gradient term.
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