
Physics 127b: Statistical Mechanics

Boltzmann Equation II: Binary Collisions

Binary collisions in a classical gas
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Figure 1: Binary collisions in a gas: top—lab frame; bottom—centre of mass frame

Binary collisions in a gas are very similar, except that the scattering is off another molecule. An individual
scattering process is, of course, simplest to describe in the center of mass frame in terms of the relative
velocity EV = Ev1 − Ev2. However the center of mass frame is different for different collisions, so we must
keep track of the results in the lab frame, and this makes the calculation rather intricate. I will indicate the
main ideas here, and refer you toReif or Landau and Lifshitzfor precise discussions.

Lets first set things up in the lab frame. Again we consider the pair of scattering in and scattering out
processes that are space-time inverses, and so have identical cross sections. We can write abstractly for the
scattering out from velocityEv1 due to collisions with molecules with all velocitiesEv2, which will clearly be
proportional to the numberf (Ev1) of molecules atEv1 (which we write asf1—sorry, not the same notation
as in the previous sections wheref1 denoted the deviation off from the equilibrium distribution!) and the
numberf2d

3v2 ≡ f (Ev2)d
3v2 in each velocity volume element, and then we must integrate over all possible

outgoing velocitiesEv′1 andEv′2
df (Ev1)

dt

∣∣∣∣
out

= −
∫ ∫ ∫

w(Ev′1, Ev′2; Ev1, Ev2) f1f2d
3v2d

3v′1d
3v′2. (1)

Similarly for the scattering in from collisions between molecules with velocitiesEv′1 andEv′2 which collide to
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give outgoing velocitiesEv1 andEv2

df (Ev1)

dt

∣∣∣∣
in

=
∫ ∫ ∫

w(Ev1, Ev2; Ev′1, Ev′2) f ′1f ′2d3v2d
3v′1d

3v′2 (2)

(with f ′1 = f (Ev′1) etc.). The space-time inversion symmetry tells us that

w(Ev′1, Ev′2; Ev1, Ev2) = w(Ev1, Ev2; Ev′1Ev′2), (3)

so that
df (Ev1)

dt

∣∣∣∣
coll

=
∫ ∫ ∫

w(Ev′1, Ev′2; Ev1, Ev2) (f
′
1f
′
2 − f1f2)d

3v2d
3v′1d

3v′2. (4)

These expressions are good for setting up the problem and making general arguments, but there is a 9
dimensional integral to do, and the scattering functionw is comprised of many delta functions that express
the conservation of energy and momentum (only avery limited set of Ev′1 and Ev′2 are consistent with the
incoming velocities) that are complicated to write down directly in terms of the lab-frame velocities. We
consequently transform to the center of mass frame, defining center of mass and relative coordinates

Erc = m1Er1+m2Er2
m1+m2

, ER = Er1− Er2, (5)

the corresponding velocities
Ec = dErc/dt, EV = d ER/dt, (6)

and similar primed expressions in terms of the outgoing velocities. The conservation laws are now easy to
state

Ec = Ec′,
∣∣∣ EV ∣∣∣ = ∣∣∣ EV ′∣∣∣ , (7)

and we can simply describe the scattering rate, which in the CM frame is entirely analogous to scattering off
a fixed center, in terms of a differential (angular) cross section

scattering rate into solid angled�sc = nscV σ(θsc, V )d�sc, (8)

with nsc the density of scatterers, here the particles of velocityv2.

Thus we can write the collision term:

df (Ev1)

dt

∣∣∣∣
coll

=
∫
Ev2

∫
�sc

[
f (Ev′1)f (Ev′2)− f (Ev1)f (Ev2)

] |Ev1− Ev2| σ (|Ev1− Ev2| , θsc) d�scd3Ev2 (9)

with the geometry as shown in Fig.1 andσ the differential cross section in the center of mass frame. So now
we are doing the integral in the centre of mass frame for eachEv2—a much simpler integration—but must
evaluateEv′1 andEv′2 in terms ofEv1, Ev2 andθsc. Thus the collision term can be evaluated as a four dimensional
integral

For more details consultReif, chapter 14 and particularly §14.8.

Boltzmann’s H-theorem

An interesting application of the Boltzmann equation isBoltzmann’s H-theorem. Boltzmann showed from
the Boltzmann equation that the quantityH (not the Hamiltonian!) defined by

H =
∫
d3v f ln f (10)
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never increases
dH

dt
≤ 0. (11)

Thus, within the limitations of the Boltzmann equation,−H plays the role of a generalization of the entropy
(actuallyS/kT ) toarbitrary distributions, not restricted to ones characterized by macroscopic thermodynamic
variables.

A sketch of the derivation is as follows. The time derivative ofH is

dH

dt
=
∫
d3v1

df1

dt

∣∣∣∣
coll

(1+ ln f1) (12)

=
∫ ∫ ∫ ∫

w(Ev′1, Ev′2; Ev1, Ev2) (f
′
1f
′
2 − f1f2)(1+ ln f1)d

3v1d
3v2d

3v′1d
3v′2 (13)

Using the symmetry of the scattering process under spatial inversions, time reversal, and interchange of the
two incoming (and outgoing) molecules this can be written in four different ways, with all terms the same
except(1+ ln f1) is replaced by(1+ ln f2),−(1+ ln f ′1),−(1+ ln f ′2) respectively. Summing these four
expressions then gives

dH

dt
= −1

4

∫ ∫ ∫ ∫
w(Ev′1, Ev′2; Ev1, Ev2)

(
ln f ′1f

′
2 − ln f1f2

) (
f ′1f

′
2 − f1f2

)
d3v1d

3v2d
3v′1d

3v′2 (14)

But for any positivex andy it can be seen that

(ln y − ln x) (y − x) ≥ 0 (15)

with the equal sign only valid fory = x. HencedH/dt ≤ 0, and the equality only holds iff ′1f
′
2 = f1f2.

The equilibrium conditionf ′1f
′
2 = f1f2 is equivalent to

ln f ′1 + ln f ′2 = ln f1+ ln f2 (16)

i.e. the sum of quantities before the collision equals the sum of corresponding quantities after the collision,
for all collisions. Since the equilibrium distribution must also be isotropic, so that the momentum vector
cannot occur in the distribution, this shows that the equilibrium distribution must be the exponential of a term
proportional to the kinetic energy of the particle, i.e. the distribution must be the Maxwell distribution, and
then the proportionality constant isβ.

Conservation laws and hydrodynamic equations

For quantities that are conserved in the collisions, such as mass, momentum and energy, if we sum these
quantities over all the molecules, we can derive macroscopic conservation laws which are the equations of
hydrodynamics and heat transport. The conservation laws take the form of the time derivative of a density
given by the divergence of the corresponding current or flux. These currents can then be evaluated first
using the equilibrium distribution functionf0 and then suing the correctionf1 coming from deviations from
equilibrium driven by gradients of the temperature, pressure or chemical potential, and velocity.

Conservation laws

First consider the mass. Then∫
d3v mf (Ex, Ev, t) = n(Ex, t)m = ρ(Ex, t) (17)
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with ρ the mass density. We can use the Boltzmann equation

∂f

∂t
+ Ev · ∂f

∂ Ex +
EF
m
· ∂f
∂ Ev =

df

dt

∣∣∣∣
coll

(18)

to derive the equation of motion for the density

∂ρ

∂t
= −

∫
d3v mEv · ∂f

∂ Ex −
∫
d3v EF · ∂f

∂ Ev +
∫
d3v m

df

dt

∣∣∣∣
coll

. (19)

The last term on the fight hand side is zero because mass is conserved in the collisions, the second term
− EF · ∫ d3v E∇vf is also zero, and the first term is−E∇ · Eg with Eg = ρ Eu the momentum density

Eg(Ex, t) =
∫
d3v mEv f (Ex, Ev, t) (20)

andEu the average velocity

Eu(Ex, t) =
∫
d3v Ev f (Ex, Ev, t)∫
d3v f (Ex, Ev, t) (21)

Thus we have derived the macroscopic conservation law for mass

∂ρ

∂t
+ E∇ · (ρ Eu) = 0. (22)

Now we investigate the consequence of the conservation of momentummEv in the collision. Integrating over
the velocity distribution gives

∂(ρ Eu)
∂t
=
∫
d3v mEv ∂f (Ex, Ev, t)

∂t
= −

∫
d3v mEv Ev · ∂f

∂ Ex −
∫
d3v Ev EF · ∂f

∂ Ev (23)

where again the collision term drops out. This simplifies to

∂(ρ Eu)
∂t
= −E∇ ·

(
m

∫
d3v Ev Ev f

)
+ E8 (24)

(you might want to write this in component notation if the double vector is confusing) where integration
by parts is used in the last term, andE8(Ex, t) = EF(Ex, t)n(Ex, t) is the force per unit volume. Now write the
molecular velocity in terms of the mean velocityEu and a correctionEV with zero mean

Ev = Eu+ EV , (25)

with
∫
d3v EV f = 0. Then ∫

d3v Ev Ev f = nEuEu+
∫
d3v EV EV f, (26)

since the cross term gives zero. Thus Eq. (24) reduces to

∂(ρ Eu)
∂t
+ E∇ · (ρ EuEu) = E8− E∇ ·←→6 (27)

or in component form
∂(ρui)

∂t
+ ∂

∂xj
(ρuiuj ) = 8i − ∂

∂xj
6ij (28)
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(repeated indexj summed over) with
←→
6 themomentum fluxor stress tensor

6ij = m
∫
d3V ViVjf (Ex, Eu+ EV , t) = mn

∫
d3V ViVjf (Ex, Eu+ EV , t)∫
d3V f (Ex, Eu+ EV , t) = ρ 〈ViVj 〉 . (29)

If in Eq. (29) f = fm(V ) the equilibrium Maxwell-Boltzmann distribution for the velocity shifted about the
mean velocityEu, then the off diagonal terms of6ij are zero, and the diagonal terms involve the mean square
molecular velocity fluctuation which just gives us the pressureP : 6ij = Pδij with P = 1

3nm
〈
V 2
〉 = nkBT .

Note that Eq. (22) can be used to rewrite Eq. (28) in a form that might be more familiar

ρ
d Eu
dt
= E8− E∇ ·←→6 , (30)

with
d Eu
dt
= ∂ Eu
∂t
+
(
Eu · E∇

)
Eu (31)

theadvectiveor Langrangianderivative ofEu.

A similar result can be derived for the energy density, since energy is conserved in the binary collisions, but
I will not go through the calculation here.

Transport Coefficients

There are corrections to the stress tensor if the gas is not in equilibrium. In particular if the mean velocityEu is
not uniform, there areviscous forcesthat tend to eliminate velocity gradients. These correspond to terms in
the stress tensor depending on spatial derivatives of the velocity. We can calculate these terms by evaluating
the correction termsf1 to distribution function that are proportional to the velocity gradient (for small enough
gradients) using the Boltzmann equation, and then substituting into Eq. (29). The calculation off1 follows
the same approach as in the calculation of the thermal conductivity example in the previous lecture, except
here we are considering binary collisions and there collisions off impurities. And now the local equilibrium
to which the collisions tend to restore the distribution (momentum is conserved in the collisions!) is the
Maxwell distribution at fixed temperature about a mean velocityEu(Ex, t) that is a function of position and
time in general.

We calculatef1 as the solution to
∂f0

∂t
+ Ev · ∂f0

∂ Ex '
df1

dt

∣∣∣∣
coll

(32)

where to lowest order we use the equilibrium distribution on the left hand side, and we have set the external
force to zero. In full generality the equilibrium distribution is

f0(Ev, Ex, t) ∝ eβµe−βεint(T )e−βm(Ev−Eu)
2/2 (33)

whereεint(T ) is the internal energy of the molecule (rotation and vibration etc.). TheEx, t dependence off0

arises becauseµ, T , and Eu defining the local equilibrium are functions of position and time. Thus we can
evaluate the left hand side of Eq. (32). When doing this, it is convenient to make a Galilean transformation
to a frame of reference moving with the local mean velocityEu, i.e. setEu to zero (but not derivatives ofEu)
after taking the derivatives.

Let’s first look at the time derivative term. We useP andT as the variables defining the local state of the
gas, rather thanµ andT . Then taking logs of Eq. (33) and differentiating gives

kBT

f0

∂f0

∂t
=
[(
∂µ

∂T

)
P

− µ− εv
T

]
∂T

∂t
+
(
∂µ

∂P

)
T

∂P

∂t
+mEv · ∂ Eu

∂t
, (34)

5



with εv = εint + 1
2mv

2, the energy of a particle of speedv. This expression can be simplified using the
thermodynamic identities(∂µ/∂T )P = −s and(∂µ/∂P )T = 1/n, with s the entropy per particle andn−1

the volume per particle, and then introducing the enthalpy per particleh = µ+ T s, to give

kBT

f0

∂f0

∂t
= εv − h

T

∂T

∂t
+ 1

n

∂P

∂t
+mEv · ∂ Eu

∂t
. (35)

Processing the spatial derivative in the same way gives the corresponding result

kBT

f0
Ev · ∂f0

∂ Ex =
εv − h
T
Ev · E∇T + 1

n
Ev · E∇P +mvαvβuαβ (36)

with uαβ the shear in the velocity

uαβ = 1

2

(
∂uα

∂uβ
+ ∂uβ
∂uα

)
, (37)

(it is convenient to write the expression in terms of this symmetrized derivative).

The time derivatives in Eq. (35) result from the energy, mass, and momentum currents flowing due to the
spatial derivatives ofT , P, andEu. Since these terms appear as the driving terms in the Boltzmann equation, to
leading order in the departure from equilibrium we can evaluate these currents for the equilibrium distribution
f0. For the velocity term this corresponds to using just the pressure term in6,i.e.

∂ Eu
∂t
= −Eu · E∇ Eu− 1

nm
E∇P →− 1

nm
E∇P (38)

where the last step is because we are in the frame of the local velocity, so thatEu = 0. The temperature and
pressure time derivatives are evaluated from the density conservation equation Eq. (22) (again settingEu→ 0)

∂n

∂t
= −n E∇ · Eu, (39)

and from the entropy equation (remember we are evaluating these derivatives in equilibrium so the entropy
is constant)

∂s

∂t
= 0=

(
∂s

∂P

)
T

∂P

∂t
+
(
∂s

∂T

)
P

∂T

∂t
. (40)

Using (∂s/∂T )P = cp/T with cP the specific heat per particle at constant pressure, the Maxwell relation
(∂s/∂P )T = −(∂v/∂T )P , and thenn = v−1 = P/kBT andcP − cV = kB for the ideal gas, Eqs. (39) and
(40) together give

∂P

∂t
= −nkBT (cP /cV ) E∇ · Eu, (41)

∂T

∂t
= −(kBT /cV ) E∇ · Eu, (42)

with cV the specific heat per particle at constant volume. Finally combining Eqs. (35, 36, 38,41, 42) gives
the driving term in the Boltzmann equation

∂f0

∂t
+Ev·∂f0

∂ Ex =
f0(v)

kBT

[
εv − h
T

(Ev · E∇)T +mvαvβ(uαβ − 1

3
δαβ E∇ · Eu)+ h− T cP − εv + (cV /kB)

1
3mv

2

(cV /kB)
E∇ · Eu

]
.

(43)
Note that the velocity gradient matrix haa been written in terms of a transverse part (with zero trace)uαβ −
1
3δαβ
E∇ · Eu and a longitudinal part (the trace)E∇ · Eu.

Using Eq. (32) and some treatment of the collisions, we can calculatef1(Ev), which will have contributions
proportional to the gradientsE∇T , uαβ − 1

3δαβ
E∇ · Eu, andE∇ · Eu appearing in Eq. (43). (Note that theE∇P terms
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actually cancel, and do not appear.) These may then contribute to the expressions for the stress tensor Eq.
(29), and energy flux (not written down).

For example consider the stress tensor (we evaluate the integral atEu = 0, so EV → Ev)

6ij = Pδij +m
∫
d3v vivjf1(Ev). (44)

For illustration we evaluate the collision term in the relaxation time approximation, so that the Boltzmann
equation gives

f1 = −τ f0(v)

kBT

[
εv − h
T

(Ev · E∇)T +mvαvβ(uαβ − 1

3
δαβ E∇ · Eu)+ h− T cP − εv + (cV /kB)

1
3mv

2

(cV /kB)
E∇ · Eu

]
.

(45)
The term inf1 from the temperature gradient is odd inEv and so does not contribute in the integral for6ij .
The velocity gradients lead to viscous contributions to the stress tensor. For example the second term in Eq.
(43) will give a contribution

6shear
ij = −2η(uij − 1

3
δij E∇ · Eu), (46)

with η the coefficient ofshear viscosity. In addition there is a contribution fromE∇ · Eu
6

longitudinal
ij = −ζ E∇ · Eu (47)

whereζ is known as the coefficient ofsecond viscosity.

Using similar methods, the equation resulting from the conservation of energy can be derived. The derivation
is complicated because many terms, including the kinetic energy of the mean velocity1

2ρu
2, contribute to the

energy density that is carried along by the flow velocity. The additional dissipative energy current coming
from the nonequilibrium correctionf1 on the other hand is quite simple, arising just from theEv · E∇T term in
Eq. (43), since the other terms have the wrong symmetry inEv. This leads to a term in the energy current (heat
flow) proportional to−κ E∇T with κ the thermal conductivity that again is readily evaluated using the simple
relaxation time approximation, and that in principle can be evaluated using more realistic descriptions of the
collisions.

Thus we may completely derive the fluid dynamic equations for the gas with a prescription for how to
calculate thetransport coefficientssuch as the viscosity that arise in the equations in terms of the solution
to the Boltzmann equation. This solution may still be hard to do accurately, and simple approximations,
such as the relaxation time approximation, are often used. However, in principle, knowing the two particle
molecular scattering cross-section allows a complete calculation of the transport coefficients. The form of
the equations, e.g. the expressions for the viscous contributions to the stress tensor Eqs. (46,47) are actually
valid more generally, applying to dense gases and liquids. However in these cases the Boltzmann equation
cannot be used to evaluate the transport coefficients.

The full derivation of the hydrodynamic equations from the Boltzmann equation is quite involved, but the
most important results can be derived relatively simply. For example, of the coefficient of shear viscosity it
is clear from symmetry arguments, that the time derivative terms∂f0/∂t do not contribute in Eq. (32)—these
terms do not have the right symmetry inEv to contribute to the stress tensor. It is then straightforward to
extract the contribution tof1 resulting from a particular velocity gradient, e.g.∂ux/∂z, and then to calculate
the contribution to the stress tensor. This is the subject of a problem in the homework. Similarly the thermal
conductivity can be extracted by focussing on the temperature gradient term.
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