Physics 127b: Statistical Mechanics

Boltzmann Equation |: Scattering off fixed impurities
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Figure 1: Scattering off a fixed impurity: trseattering outandscattering inprocesses.

The particle distributiory (v) atv is changed by two types of processes: scattering ffamany other ve-

locity, which decreaseg(v)—thescattering out processesand scattering from other velocities#ovhich
increasesf (v)—scattering in These processes can be collected in symmetry related pairsl. Fithe
scattering in and out processes shown in the figure are related by the combined process of space and time
inversion, and sbave the same scattering cross sectiofhus we can write the collision term

df (v)
dt

= f (fi - fl) vnso (v, Osc) dS2.
coll
wheren, is the density of scattering centetisandy are related by the scattering anglg || = |v'| (elastic
scattering), andf] is used as a shorthand fgi (T/) (see figure). Note that we arrived at this by writing

the terms in brackets &5’ — f) and noticing thefy pieces cancel, since the scattering does not change
|lv|. The second term in the integral corresponds to “scattering out” and is given by the flux of particles
at velocityv i.e. fyv multiplied by the scattering cross-section for scattering into the solid arglei.e.

no (v, by.) dQWith o (v, 0;.) the differential scattering cross-section of a single scattering center. The first
term gives the “scattering in” process — v, which is governed by the same scattering cross section (by
time and space inversion symmetry).

Example: Electrical conductivity

Lets apply this to the conductivity calculation. We arrive at the equation (for sf’naﬂ)

11;" . ﬁa— = —flnsv/o (v, Osc) d2¢ + n5v / fio (v, O5) dS2%. ()
m v

denoting unit vectors by e.d. If we define polar angles far relative to the field directioi, the left hand
side is proportional to cag and since the equation is linear we also expect this dependengg(for i.e.

f1(¥) =cosh g1 (v) = - Eg1 (v)

1| presume you are familiar with describing scattering probabilities in terntsasts sections!f not, your favorite Quantum
textbook can help out.




with g1 (v) to be found. (You can, if you prefer, exparid(v) in Legendre polynomials of c@s and use the
usual orthogonality relationships.) The second integral in Eqs(

/ f{O’ (U’ Qsc) dQsc =81 (U) EA‘ : / ﬁla (U, Gsc) dQsc (2)
with ¢ - o/ = cosh,.. Now since the integral on the rhs of EQ) (s over all?’, the only vector appearing in

this integral to set a direction i5 and so we must have

/ Vo (v,0,)de = A (V) D (3)
Finally taking the dot product with gives

A= /COS@SC o (v, 0c) d2, 4)

and putting Eqgs.1-4) together gives

Eo
1 fo = —ngv41 (U) f (1 - COS@SC) o (U’ esc) dQsc
m ov

so that
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Note itiso (v), aweightedintegral of the differential scattering cross-section at speed
o(v) = / (l - COS@sc) o (v» esc) dS2,

rather than the total cross-section= [ o (v, 6,.) dS2,. that appears in this expression. The appearance of
the extra term in co&,. comes from the scattering in process. The effect of the weighting factor is to reduce
the effect of forward scattering—these of course do not much change the current flow, so this makes physical
sense. There may be some speed dependericemftting f; into the expression for the current EG?)

j=9% E= /qﬁfﬁ) (5)

will show us what velocity average we need to calculate. The final result can be written in the form derived
in the previous lecture using the relaxation time approximatiea ng?t/m, wherer ~! = nvo,, with the
transport cross-section given by the appropriate speed average)of

B f v3%5(v) dv

Oy = -
' f v3%dv
Example: thermal conductivity of an accretion disk
For another example consider the energy transport by light (photons) scattering off nonrelativistic electrons,

an important application in astrophysics, e.g. to study accretion onto a black hole (see Ph136 notes, §2.8 for
more details).

For photon energies much less than the electron rest ipdss« m.c? the cross section is tHEhomson
cross sectiomgiven by simple electromagnetic consideratialecksorg14.7)

O—(gsc) = %o—t [1 + COSZ esc] (6)
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witho, = (87 /3)(e?/m.c?)? the total (integrated) cross section. Soin this case we have an analytic expression
for the scattering.

We proceed as before now with the photon distribution (as a function of momentum or wave vector not
velocity!) f(x, k) = fo(X, k) + f1(x, k) with fo the Planck distribution

1
fo= oPhek 1 (7)

We now know the collision term of the Boltzmann equation: where does the “driving” on the left hand side
come from? The problem we are considering is the heat transport in a temperature gradient,fsasnow
spatially dependent throudgh(x). (This is a situation where the collisions relax to a “local equilibrium”
fixed by the local temperature, rather than to some global equilibrium.) Again assyfrigigmall we have

oo
cfeh- VT = — » 8
= —nec / (fak) — fr(k))o (k - k'ydS 9)

writing fy for dfo/dT .

The argument proceeds exactly as in the electrical conductivity cas&Witketting the direction rather than
E. So repeating those arguments we get

fo

filk) = =22k - VT (10)
n.o
where
o= / (1 — costy.) o (Bsc) dS2e. (11)

In this case, the integral just gives the total cross seetipsince the term in cag,. cancels by symmetry.
Now calculate the heat transport
Jo =2 fi(k) hck ck (12)
k
(2 for two polarizations). Transforming the sum to an integral in the usual way, this gives

5 dQ .~ - he? [ Ldfo(k)
Jo = —kk-V KB k. 13
@ ( 47 ) 72n,0; /0 dT (13)

The integral over the Planck distribution can be done to finally j}ye: —« VT with

(14)

(aT* is the energy density).
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