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First I discuss two extra details for the RNG procedure. The first is the notion of spin rescaling, an addition
step in the RNG that was not needed in the 1d Ising model. The second is the idea of an infinitesimal scale
factor change at each step, which often simplifies the calculation. Since it is not possible to implement the
RNG exactly for most systems, I then introduce two general approximation methods often used to implement
the RNG.

In general, the simple elimination procedure that was successful in the 1d Ising model leads to successively
more complicated terms in the renormalized Hamiltonian, and the process cannot be followed analytically.
Two approximation methods are commonly used.

The first approach is to formulate the problem in terms of Fourier modes. Rather than starting from a
(perhaps) physical lattice model, the starting point is the Landau expansion of the free energy based on the
idea of Taylor expansion and symmetry. However, this free energy is now interpreted as an “intermediate
length scale” description: we imagine some steps of renormalization have been carried out, so that we are
looking at scales larger than the atomic scale, but not so large that the singular effect of the fluctuations
have accumulated. On these scales a Taylor expansion in coarse-grained fields might be reasonable. In this
context the Landau expansion is known as the Landau-Wilson free energy. This free energy is then used as the
Boltzmann factor for the probability of fluctuations, and the RNG is implemented by iteratively integrating
out the highest wave number (shortest length scale) modes. Again, this will tend to introduce more and more
complicated terms into the expansion, so that the procedure cannot be implemented exactly in general. A
powerful procedure is to use an expansion in the dimensionality of spaced, about a dimensiondc where
this proliferation of terms does not occur. This is often known as theε expansion, named after the small
parameterε = dc − d. I will sketch the method in the main text, with details relegated to an appendix.

The second approach is some type of approximation along the lines of the direct elimination procedure, but
truncating the renormalized Hamiltonian to take the original form after each step. This is an uncontrolled
approximation, and various methods can be used to implement the procedure. These are calledreal space
renormalizationmethods. They are often useful in getting qualitative behavior about novel phase transitions,
but not quantitative values for exponents, etc. Kadanoff and Migdal were early developers of this approach.

Spin Rescaling

For the 1d Ising model the spin correlations for the remaining spins are unchanged by the RNG, only their
separation is changed. Thus we have for the correlation functionG(r, H̄ ) = 〈s(0)s(r)〉H̄ :

G(r/b, H̄ ′) = G(r, H̄ ). (1)

At the fixed point
G(r) = G(r/b) (2)

which shows thatG is a constant, independent ofr. Remember generally we write

G(r, Tc) ∼ r−d+2−η (3)

and so for the 1d Ising modelη = 1.

The simple result of constantG(r) at Tc is a special feature of the 1d Ising model. In general a power law
dependence onr different from 2− d arises. How this result appears in the formalism depends on the details
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of the technique used in the RNG. Typically it turns out to be necessary to rescale the order parameter field,
as well as the space scale, at each step of the renormalization procedure (otherwise there is no fixed point).
In a lattice elimination process, such as in the 1d Ising model, where we simply calculate the correlation of
the remaining spins, for example, it is necessary to rescale the spin at each step

Rb(s) = s ′ = cs (4)

and then

η − 2+ d = −2 lnc

ln b
. (5)

In the 1d Ising modelc = 1, there is no spin rescaling, andη = 1. In Fourier space methods there is a
corresponding rescaling of the Fourier transform fieldsEq .

We can see howη is related to the other exponents by the following argument. The correlation function can
be constructed by imagining aspatially varyingfield h(Er) coupling to the order parameter

H = H0(s)−
∫
h(r)s(r) (6)

and then by the usual construction

G(r) =
〈
δs(Er)δs(E0)

〉
= ∂2 lnQN

∂h(Er)∂h(E0)
∣∣∣∣
h=0

. (7)

We denote quantities after one step of the RNG by primes. Then

G′(r ′) = ∂2 lnQ′N/2
∂h′(Er ′)∂h′(E0) =

∂2 lnQN

∂h′(Er ′)∂h′(E0) (8)

where the last equality is because the free energy is preserved by the RNG. The first expression isG(r/b,H ′)
the correlation function for HamiltonianH ′ at separationr ′ = r/b. A uniform field scales ash′ = bλhh,
and we suppose the same to be true for a slowly varyingh(r). A changeh′ coupling to the renormal-
ized spins ′ corresponds to changing the fieldh over bd original spins. Thus the second expression is
b−2λh

〈
(s1+ s2+ · · · )Er (s1+ s2+ · · · )E0

〉
where the sums are over thebd spins in the block averaged over in

the RNG atEr andE0. For separationEr large compared to the block size this isb2d−2λh 〈s(Er)s(0)〉 .Thus

G(r/b,H ′) = b2(d−λh)G(r,H). (9)

At Tc where the behavior is determined by the fixed point Hamiltonian, and thenH ′ = H = H ∗ this gives

G(r/b) = b2(d−λh)G(r). (10)

This is consistent with the power law decay defined byη asG ∼ r−(d−2+η) if

η = 2+ d − 2λh. (11)

Thusη is determined by the field eigenvalueλh.

Equation (11) is consistent with our previous results. The comparison with the scaling result

η = 2− γ
ν

(12)

is easiest to see by writing the RNG form for the free energy as

f ∼ |t |d/λt W(h/ |t |λh/λ0). (13)

The correlation length exponent isν = 1/λt . The susceptibilityχ ∼ |t |−γ is the second derivative off with
respect to the field giving

γ = 2λh
λt
− d

λt
. (14)

Thus the two expressions forη agree. For the 1d Ising modelλh = 1, d = 1 giving via Eq. (11) η = 1, the
result corresponding to no spin rescaling we found before.
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Continuous RNG

Often it is convenient to perform a continuous rescaling instead of using discrete factors such as 2. The
continuous renormalization groupis defined as

G = lim
b→1

Rb − 1

b − 1
. (15)

Writing b = el, the evolution of the Hamiltonian with scale parameterl is the differential equation

dH̄

dl
= G[H̄ ], (16)

giving a continuous flow in Hamiltonian space.

Dimensionality Expansion

One of the important techniques used in RNG theory is to suppose that the dimension of space can be varied
continuously, and then to expand in dimension about some value where the critical behavior becomes simple
(this usually happens in high enough spatial dimension where the dangerous long wavelength fluctuations
are quenched by phase space considerations). Since it is hard to imagine a spatial lattice in, for example,
3.3 dimensions, the dimension continuation is usually done in Fourier space, where the integral

∫
ddq ∼∫

qd−1dq can be generalized tod nonintegral. This method is too technical to go into in great detail here,
but it is worth sketching a crude motivation. There are more details in the appendix.

In our calculations on the Ising model we looked at the fluctuation corrections to mean field theory in the
quadratic approximation 〈∣∣mEq∣∣2〉 = kBT

2V (a1+ γ q2)
. (17)

Becausea1 ∝ |T − Tc|, the fluctuations become large forT → Tc and for q → 0. The probability
distribution is

P({mq}) =
∏
Eq

exp[−βV (a1+ γ q2)
∣∣mEq∣∣2] (18)

and so the approximation is called the Gaussian approximation. As we saw in a previous lecture, the
corrections to the specific heat become important within a range ofTc given by the Ginzburg criterion.
Integrating over the fluctuations it can be shown1 gives a singular contribution to the specific heat atTc
corresponding to the exponent

α = 2− d
2

(19)

rather thanα = 0 as in mean field theory. All the other exponents (β, γ . . .) are unchanged from the mean
field values. This model is called the Gaussian model, and its critical point properties are determined by the
Gaussian fixed point Hamiltonian.

1Basically, for each modeq we integrateP(mq)over all statesmq to give theq-mode partition function (dropping all uninteresting
proportionality constants)QEq ∝ (a1+γ q2)−1and so the contribution to the free energy−kT lnQEq ∝ ln(a1+γ q2). Differentiating
the free energy twice with respect to temperature to get the specific heat, the singular contribution comes from the temperature
dependence ofa1 = a′1(T − Tc). Summing over the modes then gives the most singular fluctuation contribution to the specific heat

δC ∝
∫
ddq(a1+ γ q2)−2 ∝ (a1/γ )

−(2−d/2).

Now puttinga1 ∝ t gives the result quoted. (See e.g.Modern Theory of Critical Phenomenaby S-K Ma, chapter III for more
details.)
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When is the quadratic approximation leading to the Gaussian model accurate? To estimate the importance of
the nonlinear terms in the free energy expansion, we would need to integrate over the fluctuations

∫
ddq . . . ∼∫

qd−1dq . . .. In high enough dimension theqd−1 quenches the importance of the smallq fluctuations, and
the Gaussian model becomes an accurate description of the phase transition.

To study this further, let us slightly change our notation to match that typically used in the renormalization
group literature (although where people put the factors of1

2 doesn’t seem to be consistent), writing the Landau
free energy density for some configurationm(Er) as

f = 1

2
rm2+ um4+ c

∣∣∣ E∇m∣∣∣2 (20)

with r → 0 atTc, leading to the free energy

A({mq}) = V
1

2

∑
Eq
(r + cq2)

∣∣mEq∣∣2+ u ∑
Eq1,Eq2,Eq3

mEq1mEq2mEq3m−Eq1−Eq2−Eq3

 . (21)

(To get the free energy of thesystemwe must still integrate over these fluctuations.)

We might estimate when the fourth order term is important by approximately evaluating

u
∑
Eq1,Eq2,Eq3

mEq1mEq2mEq3m−Eq1−Eq2−Eq3 ∼ terms likeu
∑
Eq1,Eq2,Eq3

〈
mEq1mEq2

〉
mEq3m−Eq1−Eq2−Eq3 (22)

where the average is calculated from using the Gaussian distribution〈
mEq1mEq2

〉 = 〈∣∣mq1

∣∣2〉 δEq1,−Eq2 (23)

so that
u
∑
Eq1,Eq2,Eq3

mEq1mEq2mEq3m−Eq1−Eq2−Eq3 ∼ terms likeu
∑
Eq1

〈∣∣mEq1

∣∣2〉∑
Eq

∣∣mEq∣∣2 . (24)

This effectively gives a correction to the first term in Eq. (21). Thus to evaluate the importance of the quartic

term we compareu
∑
Eq1

〈∣∣mEq1

∣∣2〉 with r asr → 0. Now in the Gaussian approximation

∑
Eq

〈∣∣mEq∣∣2〉
G
= kBT

(2π)d

∫
ddq

r + cq2
∼ rd/2−1 (25)

where in the last expression we are focusing just on ther dependence. Thus the ratio of the two terms as
r → 0 is

u
∑
Eq1

〈∣∣mq1

∣∣2〉
r

∼ rd/2−2 (26)

For d > 4 the correction terms are small, and this estimate suggests that the Gaussian model is an accurate
description of the critical region. On the other hand ford < 4 the “correction terms” diverge towardsTc
and the Gaussian model fails. This crossover dimension is called theupper critical dimensiondu. We have
evaluated this for a simple scalar order parameter. The valuedu may depend on the symmetry of the order
parameter.

The RNG in dimensions greater than the upper critical dimension shows that the critical properties are
determined by a fixed point Hamiltonian for which the Gaussian model is exact: this is called the Gaussian
fixed point. It is attracting on the critical surface, and has one unstable direction corresponding to the
temperature variable, Fig.1. For d < du the Gaussian fixed point stillexists(if u is zero it remains zero
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Figure 1: Schematic picture of the critical surface of the Ising transition as a function of varying the space
dimension. For a more accurate picture, see the appendix.

underRb) but it becomesunstable on the critical surfacetowards a new fixed point Hamiltonian representing
the physical,u 6= 0 non-Gaussian, fixed point. This fixed pointgrows continuously out of the Gaussian fixed
point asε = du − d increases, and ind = 3 becomes the standard 3d Ising fixed point in the case we
are considering. Since for smallε the new fixed point is near the Gaussian one, its properties (eigenvalues,
eigenvectors etc.) can be calculated by perturbing around the “easy” Gaussian fixed point. This is the basis
of theε expansion, whereε = du−d is often 4−d since the upper critical dimension is often 4, as we found
here. In the appendix I describe some of the methodology of theε-expansion for a scalar order parameter.
This is definitely an advanced topic, and it is only included for those interested in a brief dip into this vast
field!

For physical systems we need answers of course ind = 3 (or less) whereε = 1 (or larger!). Although
the expansion inε is not convergent forε = 1, it is possible to “resum” the (asymptotic) series, using
methods such as Padé approximants, to get accurate values of the exponents. Finally let us remark that once
the Gaussian fixed point has become unstable the Landau free energy no longer directly gives an accurate
description of the long length scale properties nearTc because of the large, non-Gaussian fluctuations. This
makes them4, m6 . . . terms all become important. However, taking advantage of universality, we may use
it as anintermediate scaleinitial approximation, and then use the RNG to establish the long length scale
properties. Used in this context the expression is known as the Landau-Wilson free energy.

Migdal-Kadanoff Method

The Migdal-Kadanoff is a real space renormalization method. I will use the method on thed-dimensional
Ising model to illustrate many of the ideas introduced above: approximations to truncate the Hamiltonian;
continuous scale factor RNG; and dimensionality expansion.

Consider first the 2d Ising model. We cannot implement the elimination procedure exactly in two dimensions,
so we first a bold approximation to make the elimination step look one dimensional! Label the sites by(i, j).
The approximation is simply to “move” every othery-bond so that they bonds connecting spins with even
i have strength 2K, and there are noy bonds linking spins with oddi. The hope is that this bond moving
preserves the physical behavior, but it is clearly an uncontrolled approximation. Since the oddi spins now
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only have interactions to their neighbors in thex direction, we can apply the 1d elimination procedure which
is the recursion functionR(1d)b (K) we found for the 1d Ising model. This gives

K ′y = bKy (bond moving), (27)

K ′x = R(1d)b (Kx) (spin elimination). (28)

Now repeat the procedure interchangingx andy bond directions

K ′′x = bK ′x = bR(1d)b (Kx), (29)

K ′′y = R(1d)b (K ′y) = R(1d)b (bKy). (30)

This procedure has eliminated half the spins, again leaving a square lattice. The final step is to rescale the
lattice by a factor ofb, defining one step of the approximate 2d RNG. The asymmetry inx andy can be
eliminated by alternating which bonds are moved and which are eliminated at each step.

Generalizing the procedure tod dimensions gives after one complete cycling through alld directions

K ′p = bd−pR(1d)b (bp−1Kp) (31)

wherep = 1 . . . d labelsx, y, z, . . .. We could also do the procedure for generalb. The convenient expression
of the scale-factorb elimination in 1d is

K ′ = R(1d)b (K) = tanh−1[(tanhK)b]. (32)

(Check that this reproduces ourb = 2 result!).

The asymmetry in direction indexp can again be eliminated by rotating through the direction for the elimi-
nation, rather than the bond moving, procedure. However the asymmetry is actually eliminated if we look at
the continuous renormalization forb→ 1. Writeb = eδl ' 1+ δl with δl small. Then for Eq. (31) we need

K ′p ' (1+δl)d−pR(1d)1+δl[(1+δl)p−1Kp] = [1+(d−p)δl] tanh−1
{(

tanh[Kp + (p − 1)Kpδl]
)1+δl}+O(δl2).

(33)
Carrying through all the rather messy Taylor expansions gives

K ′p = Kp + [(d − 1)Kp + 1

2
sinh(2Kp) ln(tanhKp)]δl +O(δl2). (34)

Note that this result is independent ofp, so we can write down a single result for the flow of the coupling
constant

dK

dl
= (d − 1)K + 1

2
sinh(2K) ln(tanhK). (35)

TT=0 T=∞T=T*=2ε

Figure 2: Flows of the temperatureT in thed = 1+ ε Ising model. TheT = T ∗ fixed point controls the
critical behavior.

We know thatd = 1 is a special dimension where we can solve the Ising model exactly and the RNG is
simple, so we might expect that expanding in space dimension aroundd = 1 might be useful. Ford = 1 we
also know that the fixed point is at zero temperature,K →∞, and so it is useful to work withK−1 = kBT /J
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which we will just callT (the temperature in units of the interaction strength). Now expand Eq. (35) in small
T , usingdT /dl = −K−2dK/dl. We actually only have to evaluate the second term in Eq. (35) to its zeroth
order value−1 atK →∞ to give up to orderT 2

dT

dl
= −εT + 1

2
T 2 (36)

introducingε = d − 1.

For d = 1 we seeT = 0 is a marginally stable fixed point (eigenvalue zero). Forε > 0 this fixed point
becomes stable, and there is a new, unstable fixed point atT = T ∗ = 2ε, see Fig.2. The critical behavior
is determined by theunstablefixed point, and so is given by this new fixed point. TheT = 0 fixed point
becomes theorderedfixed point. There is also a high temperaturedisorderedfixed point. Linearizing about
theT ∗ fixed point,T = T ∗ + δT , gives

dδT

dl
= −εδT + T ∗δT = εδT , (37)

and so the eigenvalue for the temperature variable isλt = ε.
To show how to calculate physical results, consider the correlation length. Starting our RNG procedure at
a temperatureT (0) near the fixed pointT (0) = T ∗ + t , where the correlation length isξ(t), we can now
iterate the RNG by integrating the continuous flow

δT (l) = teλt l, (38)

b(l) = el, (39)

ξ(l) = ξ(t)e−l . (40)

In the usual way, choosel so thatδT (l) = δTf independent ofδT (0)

el =
(
δTf

t

)1/λt

(41)

and then

ξ(0) = ξ(δTf )
(
δTf

t

)1/λt

∝ t−1/λt . (42)

Thus we have evaluated the correlation length exponentν = λ−1
t = ε−1.

Appendix: Details of theε-expansion

In this appendix I will describe the details of the first orderε-expansion for the scalar order parameter case.
The starting point is(kBT )−1 times the Landau-Wilson free-energy which plays the role of the effective
Hamiltonian

H̄ = H̄0+
∫
ddx

{
1

2

[
rm2+ c(∇m)2]+ um4

}
. (43)

It seems to be conventional when doing this calculation to define the Fourier transform with a different
normalization than I usually use

mEq =
∫
ddx m(Ex)e−i Eq·Ex, (44)

m(Ex) = V −1
∑
Eq
mEqei Eq·Ex =

∫
ddq

(2π)d
mEqei Eq·Ex. (45)
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To save writing I will write ∫
ddq

(2π)d
=
∫
Eq
. (46)

Then in terms of the modesmEq

H̄ = H̄0+ 1

2

∫
Eq
(r + cq2)

∣∣mEq∣∣2+ u ∫
Eq1,Eq2,Eq3

mEq1mEq2mEq3m−Eq1−Eq2−Eq3. (47)

First consider theGaussian modelu = 0

H̄ = H̄0+ 1

2

∫ 3

0

ddq

(2π)d
(r + cq2)

∣∣mEq∣∣2 , (48)

where the integration is up to some maximum cutoff wave number3 to take into account the fact that the
Landau-Wilson form is only good for length scales large compared to the atomic scale.

The RNG proceeds by splitting the integration into an integration over small wave numbers and large wave
numbers using a scale factorb. It is useful to split the real-space fieldm(Ex) = m<(Ex) + m>(Ex) into a
long wavelength componentm<(Ex) with Fourier componentsm<Eq with q < 3/b, and a short wavelength
componentm>(Ex) with Fourier componentsm>Eq for q in the range3/b < q < 3. Then

H̄ = H̄0+ 1

2

∫ 3/b

0

ddq

(2π)d
(r + cq2)

∣∣m<Eq ∣∣2+ 1

2

∫ 3

3/b

ddq

(2π)d
(r + cq2)

∣∣m>Eq ∣∣2 . (49)

The scheme now is to integrate over the fluctuations ofm>Eq in the partition function

Q =
∫
DmEq e−H̄ , (50)

(where the symbolDmEq denotes integrating over all values ofall mEq) and see how this affects the terms in
the effective Hamiltonian of the remaining degrees of freedom.

For the Gaussian model, the differentmEq decouple, and the only effect of the integration overm>Eq is to change

the additive constant̄H0, which we do not need to follow. Thus

H̄ ({m<Eq }) = H̄ ′0+
1

2

∫ 3/b

0

ddq

(2π)d
(r + cq2)

∣∣m<Eq ∣∣2 . (51)

Now we rescale lengths by the factorb−1 and so wave numbers byb, i.e. q ′ = bq, andm<Eq by thespin
rescaling factorζ , i.e.m′<Eq = ζ−1m<Eq to give

H̄ ′ = H̄ ′0+
1

2

∫ 3

0

ddq ′

(2π)d
(r ′ + c′q ′2) ∣∣m′<Eq ′ ∣∣2 (52)

with

r ′ = ζ 2b−dr, (53)

c′ = ζ 2b−(d+2)c. (54)

We want the chance of finding a fixed point Hamiltonian withr playing the role of the (relevant) temperature
variable, and so we want to choose the spin rescaling factor to keep the coefficient of the gradient term the
same,c′ = c. Hence we choose

ζ = bd/2+1 (55)
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and then
r ′ = b2r. (56)

(Then sincec = const, we might as well put it to unityc = 1 by choosing our unit of length.)

Equation (56) is the recursion relation forr under the RNG. There is a fixed point Gaussian Hamiltonian with
r = r∗ = 0. Linearizing about this fixed point, Eq. (56) gives the eigenvalueλt = 2. Thus the Gaussian
model has the mean field exponentν = λ−1

t = 1/2 for the correlation length. The correlation function at
Tc for the Gaussian model is proportional to the Fourier transform ofq−2 and so varies asr−(d−2). This
corresponds toη = 0.

Now we ask the question about the role of the interaction term, fourth order inmEq . We phrase the question
in terms of whetheru is relevant or irrelevant at the Gaussian fixed point, i.e. by calculating the effect of a
smallu on what we have done so far. Integrating out them<Eq in Eq. (50) now takes the form∫

Dm>Eq e−(r+cq
2)

∣∣∣m>Eq ∣∣∣2e−H̄ (4)(m<+m>) (57)

with H(4) the fourth order term with coefficientu. This expression is (up to constant factors) the Gaussian

average over the large wave number fluctuations ine−H̄ (4)
which we denote

〈
e−H̄ (4)

〉
>

. SinceH̄ (4) is small,

we can expand the exponential〈
e−H̄

(4)
〉
>
= 1− 〈H̄ (4)

〉
>
+ 1

2

〈(
H̄ (4)

)2〉
>
+ · · · (58)

= exp

{
− 〈H̄ (4)

〉
>
+ 1

2

[〈(
H̄ (4)

)2〉
>
− (〈H̄ (4)

〉
>

)2]+ · · ·} . (59)

For terms first order in smallu we need just
〈
H̄ (4)

〉
>

. It is convenient to write this as the real space integral

〈
H̄ (4)

〉
>
=
〈
u

∫
ddx(m<(Ex)+m>(Ex))4

〉
>

. (60)

This gives

〈
H̄ (4)

〉
>
= u

∫
ddx(m<(Ex)4+ 6u

∫
ddx(m<(Ex))2 〈(m>(Ex))2〉

>
+ u

∫
ddx

〈
(m>(Ex))4〉

>
, (61)

where we have used the fact that only the averages of even powers are nonzero for the Gaussian distribution,
and the factor of 6 is simply the coefficient of the cross term in the expansion of the fourth power.

The first term in Eq. (61) is just the (unchanged)u term for the modesm<Eq that have not been eliminated.

The last term adds to the constantH̄0 and is not important. The all important second term gives an additional
contribution to the coefficient12r of (m<)2 so that the coefficient becomes

r< = r + 12u
∫
ddx

〈
(m>(Ex))2〉

>
, (62)

= r + 12u
∫ 3

3/b

ddq

(2π)d
1

r + q2
. (63)

After rescaling we then get

r ′ = b2

[
r + 12u

∫ 3

3/b

ddq

(2π)d
1

r + q2

]
. (64)
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Note that
〈
(m>(Ex))2〉

>
is independent ofEx, so that there are no corrections to the coefficient of the gradient

term from the elimination. Thus the choice of the spin rescaling factor to keepc constant is not changed at
this order.

The integral in Eq. (64) is still messy to evaluate in general. It is easiest to go to the continuous renormalization
procedureb = eδl with smallδl, so that3/b ' 3(1− δl) andb2 ' 1+ 2δl, and to orderδl

r ′ = r + 2δlr + 12u
∫

d�d

(2π)d

∫ 3

3−3δl
dq qd−1 1

r + q2
. (65)

The integral is now trivial to evaluate (it is just the integrand evaluated atq = 3, multiplied by the range of
integration3δl), to give

r ′ = r + 2r δl + 12uKd
3d−1

r +32
3δl, (66)

where

Kd = 1

0(1
2d)2

d−1πd/2
(67)

is just a geometrical factor,(2π)−d times the surface area of a sphere ind dimensions. Converting to
differential form

dr

dl
= 2r + 12Kd

3d

r +32
u. (68)

We also need to find out howu evolves, unfortunately up to second order inu. For this we need to evaluate
thecumulant

C(4) =
〈(
H̄ (4)

)2〉
>
− (〈H̄ (4)

〉
>

)2
. (69)

The first term is〈(
H̄ (4)

)2〉
>
=
〈(
u

∫
Eq1,Eq2,Eq3

mEq1mEq2mEq3m−Eq1−Eq2−Eq3

)(
u

∫
Eq4,Eq5,Eq6

mEq4mEq5mEq6m−Eq4−Eq5−Eq6

)〉
>

. (70)

For the Gaussian average over the large wave number fluctuations we must pick pairs ofm>Eq and then use〈
m>Eq1

m>Eq2

〉
>
= 1

r + q2
1

(2π)dδ(Eq1+ Eq2), (71)

which is Eq. (23) in the revised notation and normalization. We call this averaging a pairing or contraction of
the twomEq . If we average over all 4 pairs of themEq appearing in Eq. (70), we get an additional contribution
to the constant term, averaging over 3 pairs gives anO(u2) correction tor andc which we do not need to
evaluate to go toO(ε), etc. We only need the contribution tou itself, which is given by averaging over 2
pairs, leaving four fluctuating (not averaged)m<Eq fields. In general the coefficient of the product of fourm<Eqi
will depend on theEqi ; however we may evaluate the coefficient for uniformm(Ex), i.e. for Eqi → 0, since
corrections will only contribute to gradient terms that are higher order than we are going.

Now to average over two pairs ofm>Eq in Eq. (70). The terms pairedmEq in the same( ) are cancelled by the
second term in the cumulant. So we get 72 terms (choose the twom>Eq in 4×3/2= 6 ways from each bracket
and then pair them up in two different ways) like (use Eq. (71))

u2
∫
Eq1,Eq2,Eq3,Eq4

〈∣∣m>Eq1

∣∣2〉
>

〈∣∣m>Eq2

∣∣2〉
>
m<Eq3

m<−Eq1−Eq2−Eq3
m<Eq4

m<Eq1+Eq2−Eq4
. (72)

Evaluating this for the wave vectors of them<Eq equal to zero setsEq1 = Eq2 and so gives for the new value of

u after eliminating the modes between3/b and3 (remember the factor of12 and the minus sign in front of
the cumulant, and that we are takingc = 1)

u< = u− 36u2
∫ 3

3/b

ddq

(2π)d

(
1

r + q2

)2

. (73)

10



q1

q2

q

 −q − q1 − q2

q3

 −q3 − q1 − q2

u u

q1

-q1

q

q3
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Figure 3: Diagrams forO(u2) terms renormalizingu. The top diagram is the term contributing to the result.

Each vertex gives a factor ofu, and the closed links correspond to

〈∣∣∣m>Eq ∣∣∣2〉
>

= (r + q2)−1. The open lines

correspond tom<Eq . As you might guess, the lower diagram of disconnected terms from
〈(
H(4)

)2〉
is cancelled

by terms from
(〈
H(4)

〉)2
in the cumulant.

The rescaling gives a factor of (3 wave vector integrals, 4 powers ofm) ζ 4b−3d = b4−d , so that toO(u2) we
have

u′ = b4−d
[
u− 36u2

∫ 3

3/b

ddq

(2π)d

(
1

r + q2

)2
]
. (74)

Forb = eδl with smallδl this gives

du

dl
= (4− d)u− 36u2Kd

3d

(r +32)2
. (75)

As with most such expansions taken beyond first order, it is most economical to formulate the terms
diagrammatically—certainly this is essential for calculations to high order. As an indication of the dia-
grammatic approach the diagrams corresponding to the argument in the last paragraph are shown in Fig.
3. The diagrams are very useful for constructing the various possibilities for the pairing or contraction

corresponding to the average

〈∣∣∣m>Eq ∣∣∣2〉
>

and keeping track of momentum conservation etc.

Equations (68) and (75) are the recursion relations forr andu. It is convenient to rescale these variables by
powers of the original cutoff̄r = r/32 andū = u3d−4 to give our final form for the recursion relations

dr̄

dl
= 2r̄ + 12Kd

ū

1+ r̄ , (76)

dū

dl
= εū− 36Kd

ū2

(1+ r̄)2 . (77)

with ε = 4− d. We see again thatu is irrelevant ford > 4, and therefore we expectu to be small near the
fixed point forε small. The flows given by these recursion relations are shown in Fig.4.

Forε > 0 the Gaussian fixed point is unstable in two directions, and a new fixed point with a single unstable
direction develops anO(ε) distance away. The new fixed point, found by settingdr̄/dl = dū/dl = 0 in the
recursion relations, is

11



u

r

Critical
surface

(a) (b)

u

r

Figure 4: Flows for (a)d > 4 and (b)d = 4− ε with ε small. Note that the critical surface—the surface of
parameters that flows into the critical fixed point—is no longer preciselyr = 0. This corresponds physically
to a change inTc coming from the interaction terms.

r̄∗ = −1

6
ε, (78)

ū∗ = ε

36Kd
. (79)

Linearizing about this fixed point[
dδr̄/dl

dδū/dl

]
=
[

2− ε
3

12Kd
1+r̄∗

0 −ε
] [

δr̄

δū

]
(80)

gives eigenvalues atO(ε)

λt = 2− ε
3
, λu = −ε. (81)

These are the first terms in an expansion in smallε = 4− d. (You can check that indeed we needed to go to
O(u2) in theu equation, but only toO(u) in ther equation to get results to first order inε).

The thermodynamic exponents can now be evaluated toO(ε). The correlation length exponentν = λ−1
t is

ν = 1

2
+ ε

12
. (82)

The value ofη follows from the spin rescaling, which was unchanged from the Gaussian result atO(ε)

η = 0+O(ε2). (83)

The remaining exponents can be found from the scaling identities to be

α = ε

6
, (84)

β = 1

2
− ε

6
, (85)

γ = 1+ ε
6
, (86)

δ = 3+ ε. (87)
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