
Physics 127b: Statistical Mechanics

Renormalization Group: General Case

The steps in the renormalization group are

1. Eliminate degrees of freedom by a scale factorb so that

N ′ = N

bd
, (1)

whilst preserving the free energy. This might be done by “block spinning” or integrating out high
momenta components in Fourier space

∫ K
K/b

qd−1dq with K the upper momentum cutoff.

2. Rescale lengths to keep the density of degrees of freedom constant

x ′ = x

b
⇒ ξ

′ = ξ

b
. (2)

This gives the renormalization group
H̄ ′ = Rb[H̄ ]. (3)

Under this process the free energy density changes as

f ′ = f [H̄ ′] = bdf [H̄ ]. (4)

UsuallyH̄ will not retain the simple form of the initial Hamiltonian, e.g. if we did the same spin elimination
in the d-dimensional Ising lattice as we did in 1d, we would have(2d)2 possible spin states of the 2d nearest
neighbors, and we would not be able to construct the new effective Hamiltonian with just three parameters.
Instead we would have to allow more complicated interactions, such as four spin terms.

We assume that there is somefixed pointHamiltonianH̄ ∗ definedby the relation

H̄ ∗ = Rb[H̄ ∗]. (5)

To understand the properties for Hamiltonians nearH̄ ∗we linearize aboutH̄ ∗, i.e.

H̄ = H̄ ∗ + hQ (6)

whereQ is some correction terms tōH ∗ (e.g. nearest neighbor interactions at the 1d Ising fixed point) and
h is a small amplitude. Now under renormalization

H̄ ′ = Rb[H̄ ∗ + hQ] = H̄ ∗ + hLb[Q] +O(h2), (7)

whereL is the linearization of the renormalization group aboutH̄ ∗. The linear operator can be “diagonalized”,
i.e. we find particular combinations of correction terms that grow geometrically

Lb[Qj ] = 3jQj (8)

with Qj an eigenvector known as acritical operator. It is convenient to write the eigenvalue as

3j = bλj (9)

and thenλj will not depend on the choice of scale factorb.
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Now expand our initial Hamiltonian in these eigenvectors

H̄ = H̄ ∗ +
∑
j

hjQj (10)

and then
H̄ ′ = H̄ ∗ +

∑
j

hjb
λjQj +O(h2) (11)

so that
h′j = bλj hj . (12)

Notice that thej th field hj will grow geometrically ifλj is positive, but will shrink ifλj is negative. This
leads to the classification

Relevant operators 3j > 1 λj > 0 hj grows
Irrelevant operators 3j < 1 λj < 0 hj shrinks
Marginal operators 3j = 1 λj = 0 ??

.

In the case of marginal operators, theO(h2) have to be investigated to decide whether the coefficient of the
operator will grow or shrink under renormalization.

One of the operatorsQj will correspond somehow to the effect of changing the temperature of the interaction
strength in the Hamiltonian, and we will label this one with the index zero. We order the other operators
according to the size of theirλj : λ1 > λ2 > · · · (i.e. decreasing “relevance” to the left).

Under iteration of the RNG

f (h0, h1, h2 . . .) = b−ldf (bλolh0, b
λ1lh1, b

λ2lh2 . . .). (13)

If our physical Hamiltonian happened to be near the critical one, then we would identifyh0 ast , the temperature
parameter that takes us through the critical point for zerohj>0. If t is small, and we iterate a large number
of times (but not so large that̄H ′ leaves the region near̄H ∗ where linearization is a good approximation),
thebλj l for λj < 0 will be sent to zero. Now, in the familiar way, as we vary our physical temperaturet we
choosel such thatbλ0l t remains fixed, and find

f (t, h1, h2, . . .) = t2−αW( h1

t11
,
h2

t12
· · · hJ

t1J
) (14)

where the exponents

2− α = d

λ0
and 1i = λi

λ0
(15)

arefixed by the eigenvalues of the linearization aboutH̄ ∗. We have denoted byJ the last relevant field
(λi < 0 for i > J ).

Thus we findscaling,anduniversalitysince the exponents are determined byH̄ ∗ and not by the physical
system. The usual case for a second order phase transition is two relevant operators (J = 1): the temperature
variableh0 = t and a symmetry breaking fieldh1 = h.

The above argument gives the essential features of how the RNG leads to an understanding of scaling and
universality. However there is one catch in the argument: most physical Hamiltonians willneverpass near
H̄ ∗ as a single parameter (e.g. the temperature) is changed. The fact that the same basic ideas apply in this
case follows from understanding the sketch in Fig.1.
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Figure 1: Flows near the critical surface

Critical phenomena, where there are power law singularities as a function of temperature in the absence of
symmetry breaking fields, occurs when there is a single relevant operator at the critical HamiltonianH̄ ∗
after setting the symmetry breaking field to zero. This means that there is a “codimension one” hypersurface
in Hamiltonian space1 such that all Hamiltonians on this hypersurface end up atH̄ ∗ after sufficiently large
number of iterations ofRb

Rlb[H̄c] → H̄ ∗ as l→∞. (16)

This is the phenomenon of universality in a nutshell: all of these Hamiltonians have the same long length-
scale properties as̄H ∗, and in particular correspond to systems in the universality class characterized by this
H̄ ∗ at their critical temperaturesTc (hence the subscriptc in Eq. (16). We call this the critical surface. Notice
that since this is a codimension one surface, i.e. of one dimension less than the dimension of the space) it is
quite likely that as we vary a single parameter of a physical system such as the temperature, or the coupling
constant, the path of Hamiltonians will intersect the critical surface.The transition temperatureTc is defined
not byH̄ being close toH̄ ∗ but byH̄ lying on the critical surface.

Let’s understand a particular Hamiltonian̄H(t) that isH̄c on the critical surface fort = 0. If we applyRb
to H̄c some finite number of timesq the Hamiltonian will evolve to be in the critical region nearH̄ ∗ where
linearization aboutH̄ ∗ is good. Now lets followH̄ (t) for t small underRb: sincet is small the trajectory
will follow that from H̄c, and afterq iterationsRqb [H̄ (t)] will also be in the critical region. We can then
expand in the critical operators:

Rqb [H̄ (t)] = H̄ ∗ + tA0Q0+
∑
j>0

AjQj . (17)

1What the “space of all Hamiltonians” means, and what is its dimension, are hard to answer precisely. Indeed mathematicians
were wary of the renormalization group until its application to the period doubling route to chaos by Mitch Feigenbaum. In that
case the space in which the RNG acts is easier to define mathematically.
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Notice thatthe amplitude of the relevant operator is proportional tot, since it is certainly zero fort = 0,
and we have arrived at this point by some finite numberq of iterationsindependent of the size oft . The
amplitudes of the irrelevant operators are finite fort = 0, and it is sufficient to keep these leading order
values.

Now we operate a furtherl − q times, wherel becomes large ast → 0:

Rlb[H̄ (t)] = Rl−qb [H̄ ∗ + tA0Q0+
∑
j>0

AjQj ] (18)

' H̄ ∗ + tA0b
λ0(l−q)Q0 (19)

since the irrelevant components shrink to zero for largel. For the free energy we have

f [H̄ (t)] = b−ldf [H̄ ∗ + tbλ0l(A0b
−λ0q)Q0] (20)

The quantity in the() is independent oft , and so we have again related the free energy of the physical
Hamiltonian near its critical temperature to that of the HamiltonianH̄l = H̄ ∗+Atbλ0lQ0 near the fixed point.
So again we choosel so thatbλ0l t is fixed, and the same results apply as before, in particular 2− α = d/λ0

andν = 1/λ0. The argument is readily extended to a small value of the symmetry breaking field, leading to
the same scaling result as before with the scaling variableh/t1 with scaling exponent1 = λ1/λ0.

What happens it we continue to applyRb? For t < 0 the Hamiltonian will eventually end up at the
low temperature fixed point, and soH̄l will have the same long length scale properties as this fixed point
Hamiltonian, such as long range order. The scaling function will correspondingly reflect these properties.
On the other hand fort > 0 many iterations send the Hamiltonian to thehigh temperature fixed point, and
H̄l in this case will reflect these properties, such as disorder at long length scales. Thus:

• The stable fixed points tell us about the qualitative properties of the phase (order, disorder etc.)

• The unstable fixed point tells us about the critical behavior near the transition temperature.
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