Physics 127a: Class Notes

Lecture 8: Polymers

The tools we have already allow us to study some interesting classical systems. One of these is the statistical
mechanics of polymers—long molecules. Although this has been studied for decades, it has become partic-
ularly exciting recently because biopolymers, such as DNA, allow the investigation of individual polymers.

In turn, the statistical mechanics of such polymers is important in the biological function. In this lecture |
will introduce some very simple issues and discuss some related experiments on single strands of DNA.

Polymers and random walks

The simplest model of a polymer is a chain of like monomers, of leagivhere each link is completely free
to rotate in any direction. A polymer @¥ such links is equivalent to a random walk @fsteps of lengtla.

One dimensional random walk In one dimension the probability distribution of arrivingXafter N
steps starting from the origin is given by the binomial distribution

P(X7N):Pbin(maN) (1)

with X = (2m — N)a (m forward steps minug/ — m backwards steps). Using the properties of the binomial
distribution (see lecture and homework 1) we ha¥¢ = 0, (X?) = Na?. We also showed that for large

the probability distribution approaches a Gaussian. In this limit we are usually interestesbia,and so
can also replace the discrete possikley a continuum. The probability densip(X) (such thatp(X)d X
gives the probability of ending betwegéhandX + d X) is

() = — ex (—X—z) @)
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with o2 = Na?. The largeV results also follow from the central limit theorem. Sidte= Y"." , x, is the sum
of N independent random variables, for lal§ehe distribution is Gaussian, with variandgx?) = Na?.

Three dimensional random walk For a three dimensional polymer the laryeresult is similarly
Gaussian. NowR = (X, Y, Z) = )_ X;, so that the probability of ending up &tcoordinateX is

2
p(X) = EXP(—X—) . o?=N(x?)=Nd’/3 A3)
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with similar results forp(Y), p(Z). Then the probability density for ending up17élis

5 1 R?
P(R) = p(X)p(Y)p(Z) = m eXp<—ﬁ> , (4)

with 02 = Na?/3. Thus a long polymer will form a ball of radius of ordgtNa, much smaller than the
stretched lengtlh. = Na. The ball is often characterized by the radius of gyraftgn= ,/((X; — X,)?) (with

the average over all links j and over fluctuations)R¢ is also of ordern/Na.
We can obtain an exact expression fgiR), albeit one that must be evaluated numerically. We start with

/. .. /d2x1d2x2 .. .dZXN 5(2,- )_C)i - 13)
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Figure 1. Comparison of exact and Gaussian expressions for the radial probability distrimmép(z{é)for
a 3d random walk or ideal polymer.

where heref d2x denotes the integral over the surface of a sphere of radit&his expression is hard to
evaluate because of the constrdint;;, = R. However if we take the Fourier transform

p@) = [ R R ©)
the constraint gives exp) ; ¢.x;), and the integral factorizes

e fdzxe"‘ﬂ N
p(q) = (W) . (7)

This trick of using a Fourier transform to simplify the manipulation of a delta-function constraint is often
useful. The integral in the numerator of E@) (s

1 ] 4 2 of
2a? / d(cosp)eitacos — HTaSINGa) 8)
—-1 qa

Inverting the Fourier transform gives

o 1 = (singa\"
R) = Rl ——) d%. 9
P = s [ (SGa7) ©)
The integration over the angles §is easily done, to give
B 1 [*®singR [singa\"
R) = — dq. 10
PR =5 [ TRAE (000) g (10)
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It is useful to introduce? = ga andL = Na, when the expression reduces to

.1 * Sin(NQR/L) (sinQ\"
D=z, womn (o) @ )

This is now easy to evaluate and plot in Mathematica, for example. Note that result depends on the fractional
extensionR /L, and if you evaluate Eq.l() for variousN you will find thatp(ﬁ) =0forR/L = 1 (the

fully stretched case). It is probably best to plat®?p(R) giving the probability of finding the endpoint at
distancer from the origin. Remarkably, the Gaussian approximation is quite accurate ev&ra®small

as jsee Fig. {).

Elasticity of the ideal polymer

Entropy method (microcanonical ensemble) Consider a polymer tethered to two points onithaxis,
one atx = 0 and the other at = X. Left to itself, the most probable configuration would ¥e= 0—to
stretch the polymer to endpoint separatiotherefore decreases the entropy. The force can be calculated as

F_ s
S=, (12)
T 0X

with S(X) = kIn Q(X), and2 (X) the number of microstates consistent with the fixed endpoints. We could
show this for example by tethering the polymer to a piston that changes the volume of a gas, and then by
maximizing the total entropy show that this expression gives the right force to balance the force on the piston
from the gas.

The number of state (X) is simply proportional to the probability of the polymetth a free end
arriving atX (microcanonical ensemble- probability o« number of states)

X2
QX ~o5na23)- '
( )O(exp( 2Na2/3> ( 3)
So 3 k
o 3k o 14
$(X) 2 Na? .
and the force is 3T X
a L

(introducing the stretched out length= Na again). We have used the Gaussian expressiop(@) which

is only good forX not too large (i.e. not approachirdg, and so the force expression is good for snall

only. Notice that we gdtlookés Lawwith a spring constant proportionalk@. The force arises completely

from entropic effects. Similar arguments can be used to calculate the elasticity of ideal rubber (crosslinked
polymers) where again the elasticity is entropy dominated.

Energy method (Gibbs-like ensemble) We can also do the calculation by fixing the forEgrather
than the endpoink) and the temperatur€. For an applied forcé the energy of a configuration with
endpoint separatioX is E = —F X. The patrtition function is then

0= Z oBF X — Z ePFalcoss; (16)

states states

with 6; the angle of théth link to thex-axis. We have calculated this before! It is just the partition function
of classical momentg = « in a magnetic field = F (or do the integrals directly)

0 (4;1 sinh,BFa)N'

T (17)
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The extensiorX = ) x; is analogous to the magnetic moment
X = Na[coth(BFb) — 1/(BFb)] (18)

(and the function in the [] is the Langevin function).
For Fb « kT we use the small argument expansion of the Langevin function, and get

Na?
~ —F, 19
3kT (19)
the same result as before. For the strong stretching Kimit> kT we have
kT
X >~ Na (l— —) (20)
Fa
so that the force to stretch out the polymer divergeX¥ as L
F 1
g, - (21)
kT ~ 1—X/L

(Presumably this could also be calculated in the microcanonical ensemble, but | haven't tried this.)

Confined Polymers

Confining a polymer to a small region also lowers the number of accessible states and so raises the entropy.
This type of problem can be treated using the fact that the probability distribution for a random walk satisfies
thediffusion equation|If we think of growing the ideal polymer link by link, the probabilip(x, N) evolves
as
ap 2
oN = DV<p (22)
with D = a?/6, and we are treatiny as a continuous variable.(Check that Et).4atisfies this.)
First consider a one dimensional problem of an ideal polymer confined between rigid waks @tL.

The probabilityw (x1, xo, N) that a polymer that starts atwill end atx; is p(x,, N) wherep satisfies

op 32P
— =D——, 23
oN 0x2 (23)
with the initial condition
p(-x’N)=6(-x_xl)7 (24)
and the boundary conditions
p(O,N) =p(L,N)=0. (25)
By expanding in the modes simr x /L you can show that the solution fpt(x,, N) and sow(x1, x2, N) is
2 _ /ATX1\ . (NTXp Dn?n?
wixy, 12, N) = — ;&n( 7 )sm( 7 )exp(— N (26)
The partition function
Qld = /dxlfdxzw(xl, X2, N) (27)
8L 1 Dn?n?
=— — exp(—n—an> . (28)
T noddn L



For L < +~/Na only then = 1 mode contributes
8L Dr?

giving a free energy of confinement (usifg= a?/6)
2.2

)
The 3/ problem of confinement in a cube of sidds given by repeating this calculation in each of the
three directions, giving
8\?3 w2a?
and a free energy of confinement
2612
A=No5+ o(nV). (32)

More realistic models

The freely jointed chain is an oversimplified model for a polymer. Two effects we might want to include are
the stiffness against bond bending and the hard core repulsion of the atomic cores.

Stiff polymers To model the stiffness of a polymer chain we restrict the free rotation of each bond by
assuming there is an energy cost for a nonzero angle between successive bonds. The simplest model is to
assume the energy depends on the angle between the bonds, but not on the orientation of the plane formed
by the bonds. Th&ratky-Porodmodel supposes the energy for each bond pair is proportiori,al F9+1,

with 7; the direction of thejth link (a unit vector). The Hamiltonian of this model is (for a polymenbf- 1
monomers)

N N
H=-KY fj-fjj1=-K) cos (33)
Jj=1 j=1

where in the latter expressien is the angle between thih and thej + 1th link. To calculate the elasticity
we would add the extension energy to give

N
H=—-KY ij-ljja—aF -y I (34)

j=1 j
Again this has an exact magnetic analogy: ta/aHeisenberg spin model of classical spingaken to be
unit magnitude, with associated moment= a in a field B = F, and with a nearest neighbor interaction
proportional tas; - 5;1.

First consider the" = 0 case. This model can be solved exactly—for the magnetic calculation see the

paper by Michael Fished]. The partition function is

N
ov=]] / dS2;ePX Ei=1%0%) = (g )V (35)
j=1
with (using [ d2 — [ d¢ [T sin6do)
1 inhBK
01=27 / d(cosp)elk st — g STPK (36)
1 BK
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The thermodynamic quantitie, U etc. can be calculated in the usual way.
To calculate<ﬁ2> we need

(&%) =((£7)) - 307, €

i.e. thecorrelationbetween the directions of any two bonds. The nearest neighbor correlation is easy

K coso
e = oy = IR0 _ 400 )
This gives
(7; - Tj+1) = c(BK) = cothBK — ﬂiK (39)
again involving the langevin function. The correlation with thik link is
(f;  Trgn) = " = e "WO, (40)

This can be seen geometrically—only the projection along the preceding link is transmitted to the next one—
or more formally, as in the paper by Fisher. In terms of the separation measured along the chain, this can be
written in terms of a correlation length or tpersistence length,

(£ Tjn) = e7"/% (41)
with a
= ) 42
5 In(1/c) (42)
For a stiff polymerK / kT > 1
kT
~1——, 43
cxl- (43)
kT
In(1/c) ~ — 44
nl/e) = — (44)
and then
K
&) >~ ak—T. (45)
Now we can work ou(§2>
<1_é2> N [i-1 N
DM D IR S P (46)
i=11]j=1 j=i+1

For a long chain, for mostthe two sums in the braces can be replaced by

Y= @7)
k=1 - ¢
and then ) L
<132>:Na2 1+ ) = Na? —i—c. (48)
1-c¢ 1—c¢



The factor(1+ ¢)/(1— ¢) > 1 multiplying the ideal resulva? is known as the Flory factaf . The result
is also often written

(132> —Lb (49)
with L = Na the fully stretched length, and then
1
b==TC (50)
1-c¢

the Kuhn length The Kuhn length gives the effective link length of the polymer needed to regain the ideal
polymer results. For the stiff polymé¢ > kT expanding to first order inkT /K using Eq. 43) gives

b=~ 2, (51)
so that the Kuhn length and the persistence length are quite comparable.
Elasticity of stiff polymers The Hamiltonian including the stretching energy Egd)(cannot be solved
exactly. We can however derive the extension in the small force limit. The method is quite general, and is
analogous to the resyltE — (E))?) = kT2C that we derived for energy fluctuations (h&te= dU/dT is

the thermal capacity).
We work with a general polymer Hamiltonian with a term for a force initkeirection

N+1
H=Hy— FX, X=a) t. (52)
j=1

Then the average extension is

Zstates X PHomFX) dIn On

X) = = . 53
S S [ S TV T (53)
Differentiating this expression with respectgd gives
d (X)
apF = X - (54)
and so 4X)
aF |, =P (55)
Using(X?) = <I32> /3 gives
po T HTX 56)
B < ,32> b L
For the stiff polymer this can be written
3T X
p



Nonlinear elasticity: the worm-like chain model The Kratky-Porod model including the stretching force
Eq. (34) cannot be solved exactly. To make progress we go to a continuum version knowmastindike
chainmodel—think of the polymer as an unstretchable worm, with an energy cost for wriggling. The WLC
model is given by taking — O maintainingNa = L constant, and expandirfg- E}+1 ~1-— GJ.Z/Z. This
gives (apart from an additional constant)

- 2
H= kTgp/ [% (Z—;) - th} ds (58)

usingKa — kT&,. The integral is over the polymer contagrand the force is in the direction. Marco
and Siggia 2] discuss the full solution. We will only look at the smadllimit (already done) and the large
F limit—for intermediate values numerics are needed.

If the polymer is nearly fully extended, we can expand quadratically jthe component of perpen-
dicular to the extent. Usings ~ dx and

o= VI G =1 50 (59)

reduces the Hamiltonian to

N & (d0\° | f -
H_kT/ |:§ (E) +§(u) :|dx+const , (60)

with f = F/kT. ThisquadraticHamiltonian can be solved using equipartition.
Expand in normal modes (assuming= 0 atx = 0, L)

- L (ATTXN )
tl—;SIn<T>tL . (61)
Using the orthogonality of the functions on [D] gives
RAY-ON
~ —kTL = 2
3 Z(z L) (62)

Equipartition gives
1

2
T n2n2 :
LSI’T +f

X ~ f dx (1 - %(3)) (64)

:L(l—Z%ﬂ[). (65)

n E[’LZ

(67 = ) = (3

The average length is

For a long chain the sum can be approximated by an integral, ysiags/L anddg = /L, to give

1/2
i s-1-3()" (©6)
gpq +f 2\ F§,
Writing in terms of the forcer to give extensior{X)
kT 1 1

T 41— x/L7? )
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Notice the divergence fok — L is as(1 — X/L)~? compared with the-1 power found for the ideal
polymer.
Marco and Siggiad] suggest the interpolation formula

F

kT |:X 1 1 1] (68)

> — |-t =

&, LL 41-X/L? 4
which agrees with the limiting results E&.4Q) and €7), and is close to their numerical results for intermediate
values.
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Figure 2: Fit to worm-like chain model with = 32.8u andé,, = 53.4nm (from Bustamante et aB])

To get a feel for the numbers considephage DNA. This molecule is found to ha§g ~ 50nmwhich
corresponds to 150 base pairs, i.e. the polymer is indeed stiff sg timimuch longer than the monomer
length. Experiments are often done on molecules with lengths of several tens of microns. TakiBQu
gives(R?) ~ 2u. The order of magnitude of the tensile forces to stretch the DNA is

T
K 0.1pN (69)
&

so that for large extensions

F ~ 0.1pNx (70)

41— X/L)*
Such forces can be measured in single molecule experiments. The measured force-extension curves agree
well with the expression Eq66), see Fig. 2).

Polymers with repulsive interactions We can include some of the effect of the repulsive interaction by
supposing each monomer is surrounded by and excluded valufixed by supposing that the interaction
strength is of ordekT for monomers separated by/. This will tend to swell the polymer from the size

RN«/Na.



In terms of random walks we might suppose that the walk is “self avoiding” rather than free. This is most
easily formulated on a lattice, where each link is a bond on the lattice. For a self avoiding random walk we
demand that the walk cannot visit a site that has previously been visited. This is a hard statistical mechanical
problem, since the constraints although local in space are nonlocal along the chain. Numerical simulations
give thescaling result

R~ N' (71)

with the exponent ~ 0.588 in 2.
Flory suggested a very simple approximation for calculating the effect of the excluded volume. He wrote
the free energy as the sum of the repulsive energy and the extra entropy for stretching the polymer. The
repulsive energy per monomer for a polymenbmonomers occupying volumi?® is estimated akT times
the number of monomers within the volumegiving E ~ NkT x Nv/R®. The stretch entropy is given by
Eqg. (14) with X — R. Thus the total free energy is
N2y R? )

F~kT(—+

—_— 72
R3 Na? (72)

Minimizing with respect toR gives Eq. {1) with v = 3/5. Note that this result is very close to the value
found from the self avoiding random walk on the lattice.

Polymers are usually in solution. The effective interaction of the monomers is given by the balance
of the self repulsion and the interaction with the solvent molecules. For a good solvent, the self repulsion
dominates, and the resutt ~ N%8 just calculated holds. For a poor solvent, the repulsive interaction with
the solvent dominates, and the effective interaction is negative. In this case the polymer collapses to a small
globule of sizeR ~ N3, (Note that the confinement entropy Eg32) is not large enough to stop this
collapse.) By tuning a parameter (often the temperature) between these cases, a value can be found for which
the effective interaction is zero, and the polymer behaves as if i®eal, N*/2. This is known as gheta
solventor thetheta point

Other References

A standard reference on polymerdise Theory of Polymer Dynamibg M. Doi and S. F. Edwards. Chapter

2 covers the equilibrium properties, at a more sophisticated level than | used. On the othktdhecular
Driving Forcesby Ken A. Dill and Sarina Bromberg presents a discussion from the very beginning—chapters
32 and 33 are most relevant.

One of the first papers to describe the measurement of the elastic properties of a single DNA molecule
is Smith et al. fi. A review of the theoretical ideas and experimental methods is by Strick &f]aarid
Bouchiat et al. §] give a critical analysis of the worm-like chain model. There are also nice experiments
donein Quake’s lab at CaltecH|[ You can find out what -phage DNAs at the Molecular Gentics Workshop
website B].

Another interesting application of statistical mechanics to DNA is the denaturing transition in which the
pair of polymers bound in the helix splits apart. The review by Michael Peyraud (see in particular 8VI)
describes a simple model calculation.
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