
Physics 127a: Class Notes

Lecture 8: Polymers

The tools we have already allow us to study some interesting classical systems. One of these is the statistical
mechanics of polymers—long molecules. Although this has been studied for decades, it has become partic-
ularly exciting recently because biopolymers, such as DNA, allow the investigation of individual polymers.
In turn, the statistical mechanics of such polymers is important in the biological function. In this lecture I
will introduce some very simple issues and discuss some related experiments on single strands of DNA.

Polymers and random walks

The simplest model of a polymer is a chain of like monomers, of lengtha, where each link is completely free
to rotate in any direction. A polymer ofN such links is equivalent to a random walk ofN steps of lengtha.

One dimensional random walk In one dimension the probability distribution of arriving atX afterN
steps starting from the origin is given by the binomial distribution

P(X,N) = Pbin(m,N) (1)

withX = (2m−N)a (m forward steps minusN −m backwards steps). Using the properties of the binomial
distribution (see lecture and homework 1) we have〈X〉 = 0,

〈
X2
〉 = Na2. We also showed that for largeN

the probability distribution approaches a Gaussian. In this limit we are usually interested inX � a,and so
can also replace the discrete possibleX by a continuum. The probability densityp(X) (such thatp(X)dX
gives the probability of ending betweenX andX + dX) is

p(X) = 1√
2πσ1

exp

(
− X

2

2σ 2
1

)
(2)

with σ 2
1 = Na2. The largeN results also follow from the central limit theorem. SinceX =∑N

i=1 xi is the sum
of N independent random variables, for largeN the distribution is Gaussian, with varianceN

〈
x2
i

〉 = Na2.

Three dimensional random walk For a three dimensional polymer the largeN result is similarly
Gaussian. NowER = (X, Y, Z) =∑ Exi , so that the probability of ending up atx-coordinateX is

p(X) = 1√
2πσx

exp

(
− X

2

2σ 2
x

)
, σ 2

x = N
〈
x2
i

〉 = Na2/3 (3)

with similar results forp(Y ), p(Z). Then the probability density for ending up atER is

p( ER) = p(X)p(Y )p(Z) = 1

(
√

2πσ)3
exp

(
− R

2

2σ 2

)
, (4)

with σ 2 = Na2/3. Thus a long polymer will form a ball of radius of order
√
Na, much smaller than the

stretched lengthL = Na. The ball is often characterized by the radius of gyrationRG =
√〈
(Exi − Exj )2

〉
(with

the average over all linksi, j and over fluctuations).RG is also of order
√
Na.

We can obtain an exact expression forp( ER), albeit one that must be evaluated numerically. We start with

p( ER) =

∫
· · ·
∫
d2x1d

2x2 . . . d
2xN δ(

∑
i Exi − ER)∫

· · ·
∫
d2x1d2x2 . . . d2xN

, (5)
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Figure 1: Comparison of exact and Gaussian expressions for the radial probability distribution 4πR2p( ER)for
a 3d random walk or ideal polymer.

where here
∫
d2x denotes the integral over the surface of a sphere of radiusa. This expression is hard to

evaluate because of the constraint
∑ Exi = ER. However if we take the Fourier transform

p̃(Eq) =
∫
ei Eq· ERp( ER) d3R (6)

the constraint gives exp(i
∑

i Eq.Exi), and the integral factorizes

p̃(Eq) =
(∫

d2xei Eq·Ex

4πa2

)N
. (7)

This trick of using a Fourier transform to simplify the manipulation of a delta-function constraint is often
useful. The integral in the numerator of Eq. (7) is

2πa2
∫ 1

−1
d(cosθ)eiqa cosθ = 4πa2 sin(qa)

qa
. (8)

Inverting the Fourier transform gives

p( ER) = 1

(2π)3

∫
e−i Eq· ER

(
sinqa

qa

)N
d3q. (9)

The integration over the angles ofEq is easily done, to give

p( ER) = 1

2π2

∫ ∞
0

sinqR

qR

(
sinqa

qa

)N
dq. (10)
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It is useful to introduceQ = qa andL = Na, when the expression reduces to

p( ER) = 1

2π2a3

∫ ∞
0

sin(NQR/L)

(NQR/L)

(
sinQ

Q

)N
dQ. (11)

This is now easy to evaluate and plot in Mathematica, for example. Note that result depends on the fractional
extensionR/L, and if you evaluate Eq. (11) for variousN you will find thatp( ER) = 0 for R/L = 1 (the
fully stretched case). It is probably best to plot 4πR2p(R) giving the probability of finding the endpoint at
distanceR from the origin. Remarkably, the Gaussian approximation is quite accurate even forN as small
as 5,see Fig. (1).

Elasticity of the ideal polymer

Entropy method (microcanonical ensemble) Consider a polymer tethered to two points on thex-axis,
one atx = 0 and the other atx = X. Left to itself, the most probable configuration would beX = 0—to
stretch the polymer to endpoint separationX therefore decreases the entropy. The force can be calculated as

F

T
= − ∂S

∂X
, (12)

with S(X) = k ln�(X), and�(X) the number of microstates consistent with the fixed endpoints. We could
show this for example by tethering the polymer to a piston that changes the volume of a gas, and then by
maximizing the total entropy show that this expression gives the right force to balance the force on the piston
from the gas.

The number of states�(X) is simply proportional to the probability of the polymerwith a free end
arriving atX (microcanonical ensemble→ probability∝ number of states)

�(X) ∝ exp

(
− X2

2Na2/3

)
. (13)

So

S(X) = −3

2

k

Na2
X2 (14)

and the force is

F(X) = 3kT

a

X

L
, (15)

(introducing the stretched out lengthL = Na again). We have used the Gaussian expression forp(X)which
is only good forX not too large (i.e. not approachingL), and so the force expression is good for smallX

only. Notice that we getHooke′s Lawwith a spring constant proportional tokT . The force arises completely
from entropic effects. Similar arguments can be used to calculate the elasticity of ideal rubber (crosslinked
polymers) where again the elasticity is entropy dominated.

Energy method (Gibbs-like ensemble) We can also do the calculation by fixing the forceF (rather
than the endpointX) and the temperatureT . For an applied forceF the energy of a configuration with
endpoint separationX isE = −FX. The partition function is then

Q =
∑
states

eβF
∑
i xi =

∑
states

eβFa
∑
i cosθi (16)

with θi the angle of theith link to thex-axis. We have calculated this before! It is just the partition function
of classical momentsµ = a in a magnetic fieldB = F (or do the integrals directly)

Q =
(

4π sinhβFa

βFa

)N
. (17)
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The extensionX =∑ xi is analogous to the magnetic moment

X = Na [coth(βFb)− 1/(βFb)] (18)

(and the function in the [] is the Langevin function).
ForFb � kT we use the small argument expansion of the Langevin function, and get

X ' Na2

3kT
F, (19)

the same result as before. For the strong stretching limitFa � kT we have

X ' Na
(

1− kT
Fa

)
(20)

so that the force to stretch out the polymer diverges asX→ L

Fa

kT
→ 1

1−X/L. (21)

(Presumably this could also be calculated in the microcanonical ensemble, but I haven’t tried this.)

Confined Polymers

Confining a polymer to a small region also lowers the number of accessible states and so raises the entropy.
This type of problem can be treated using the fact that the probability distribution for a random walk satisfies
thediffusion equation. If we think of growing the ideal polymer link by link, the probabilityp(x,N) evolves
as

∂p

∂N
= D∇2p (22)

with D = a2/6, and we are treatingN as a continuous variable.(Check that Eq. (4) satisfies this.)
First consider a one dimensional problem of an ideal polymer confined between rigid walls atx = 0, L.

The probabilityw(x1, x2, N) that a polymer that starts atx1will end atx2 is p(x2, N) wherep satisfies

∂p

∂N
= D∂

2P

∂x2
, (23)

with the initial condition
p(x,N) = δ(x − x1), (24)

and the boundary conditions
p(0, N) = p(L,N) = 0. (25)

By expanding in the modes sinnπx/L you can show that the solution forp(x2, N) and sow(x1, x2, N) is

w(x1, x2, N) = 2

L

∑
n

sin
(nπx1

L

)
sin
(nπx2

L

)
exp

(
−Dn

2π2

L2
N

)
. (26)

The partition function

Q1d =
∫
dx1

∫
dx2w(x1, x2, N) (27)

= 8L

π3

∑
n odd

1

n2
exp

(
−Dn

2π2

L2
N

)
. (28)
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ForL� √Na only then = 1 mode contributes

Q1d ' 8L

π3
exp

(
−Dπ

2

L2
N

)
(29)

giving a free energy of confinement (usingD = a2/6)

A = N π
2a2

6L2
+O(lnL). (30)

The 3d problem of confinement in a cube of sideL is given by repeating this calculation in each of the
three directions, giving

Q3d =
(

8

π3

)3

V exp

(
−π

2a2

2L2
N

)
(31)

and a free energy of confinement

A = N π
2a2

2L2
+O(lnV ). (32)

More realistic models

The freely jointed chain is an oversimplified model for a polymer. Two effects we might want to include are
the stiffness against bond bending and the hard core repulsion of the atomic cores.

Stiff polymers To model the stiffness of a polymer chain we restrict the free rotation of each bond by
assuming there is an energy cost for a nonzero angle between successive bonds. The simplest model is to
assume the energy depends on the angle between the bonds, but not on the orientation of the plane formed
by the bonds. TheKratky-Porodmodel supposes the energy for each bond pair is proportional toEtj · Etj+1,
with Etj the direction of thej th link (a unit vector). The Hamiltonian of this model is (for a polymer ofN +1
monomers)

H = −K
N∑
j=1

Etj · Etj+1 = −K
N∑
j=1

cosθj (33)

where in the latter expressionθj is the angle between thej th and thej + 1th link. To calculate the elasticity
we would add the extension energy to give

H = −K
N∑
j=1

Etj · Etj+1− a EF ·
∑
j

Etj . (34)

Again this has an exact magnetic analogy: to a 1d Heisenberg spin model of classical spinsEsj taken to be
unit magnitude, with associated momentµ = a in a field EB = EF , and with a nearest neighbor interaction
proportional toEsj · Esj+1.

First consider theF = 0 case. This model can be solved exactly—for the magnetic calculation see the
paper by Michael Fisher [1]. The partition function is

QN =
N∏
j=1

∫
d�je

βK
∑N
j=1 cosθj = (Q1)

N (35)

with (using
∫
d�→ ∫ 2π

0 dφ
∫ π

0 sinθdθ )

Q1 = 2π
∫ 1

−1
d(cosθ)eβK cosθ = 4π

sinhβK

βK
. (36)
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The thermodynamic quantitiesA,U etc. can be calculated in the usual way.

To calculate
〈 ER2

〉
we need

〈 ER2
〉
= a2

〈(∑ Etj
)2
〉
= a2

∑
ij

〈Eti · Etj 〉 , (37)

i.e. thecorrelationbetween the directions of any two bonds. The nearest neighbor correlation is easy

〈Etj · Etj+1
〉 = 〈cosθ〉 =

∫
d� cosθ eβK cosθ∫
d� eβK cosθ

= d lnQ1

d(βK)
. (38)

This gives 〈Etj · Etj+1
〉 = c(βK) = cothβK − 1

βK
(39)

again involving the langevin function. The correlation with thenth link is〈Etj · Etj+n〉 = cn = e−n ln(1/c). (40)

This can be seen geometrically—only the projection along the preceding link is transmitted to the next one—
or more formally, as in the paper by Fisher. In terms of the separation measured along the chain, this can be
written in terms of a correlation length or thepersistence lengthξp〈Etj · Etj+n〉 = e−na/ξp (41)

with
ξp = a

ln(1/c)
. (42)

For a stiff polymerK/kT � 1

c ' 1− kT
K
, (43)

ln(1/c) ' kT

K
(44)

and then

ξp ' a K
kT
. (45)

Now we can work out
〈 ER2

〉
〈 ER2

〉
a2
=

N∑
i=1

 i−1∑
j=1

ci−j + 1+
N∑

j=i+1

cj−i
 . (46)

For a long chain, for mosti the two sums in the braces can be replaced by

∞∑
k=1

ck = c

1− c , (47)

and then 〈 ER2
〉
' Na2

(
1+ 2c

1− c
)
= Na2 1+ c

1− c . (48)
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The factor(1+ c)/(1− c) > 1 multiplying the ideal resultNa2 is known as the Flory factorCF . The result
is also often written 〈 ER2

〉
= Lb (49)

with L = Na the fully stretched length, and then

b = 1+ c
1− ca (50)

theKuhn length. The Kuhn length gives the effective link length of the polymer needed to regain the ideal
polymer results. For the stiff polymerK � kT expandingb to first order inkT /K using Eq. (43) gives

b ' 2ξp, (51)

so that the Kuhn length and the persistence length are quite comparable.

Elasticity of stiff polymers The Hamiltonian including the stretching energy Eq. (34) cannot be solved
exactly. We can however derive the extension in the small force limit. The method is quite general, and is
analogous to the result

〈
(E − 〈E〉)2〉 = kT 2C that we derived for energy fluctuations (hereC = dU/dT is

the thermal capacity).
We work with a general polymer Hamiltonian with a term for a force in thex-direction

H = H0− FX, X = a
N+1∑
j=1

tjx. (52)

Then the average extension is

〈X〉 =
∑

states Xe−β(H0−FX)∑
states e−β(H0−FX) =

d lnQN

d(βF)
. (53)

Differentiating this expression with respect toβX gives

d 〈X〉
dβF

= 〈X2
〉− 〈X〉2 (54)

and so
d 〈X〉
dF

∣∣∣∣
F→0

= β 〈X2
〉
F→0 . (55)

Using
〈
X2
〉 = 〈 ER2

〉
/3 gives

F = 3kT〈 ER2
〉X = 3kT

b

X

L
. (56)

For the stiff polymer this can be written

F = 3kT

2ξp

X

L
. (57)
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Nonlinear elasticity: the worm-like chain model The Kratky-Porod model including the stretching force
Eq. (34) cannot be solved exactly. To make progress we go to a continuum version known as theworm-like
chainmodel—think of the polymer as an unstretchable worm, with an energy cost for wriggling. The WLC
model is given by takinga → 0 maintainingNa = L constant, and expandingEtj · Etj+1 ' 1− θ2

j /2. This
gives (apart from an additional constant)

H = kT ξp
∫ [

1

2

(
dEt
ds

)2

− F tx
]
ds (58)

usingKa → kT ξp. The integral is over the polymer contours, and the force is in thex direction. Marco
and Siggia [2] discuss the full solution. We will only look at the smallF limit (already done) and the large
F limit—for intermediate values numerics are needed.

If the polymer is nearly fully extended, we can expand quadratically inEt⊥, the component ofEt perpen-
dicular to the extent. Usingds ' dx and

tx =
√

1− (Et⊥)2 ' 1− 1

2
(Et⊥)2 (59)

reduces the Hamiltonian to

H ' kT
∫ [

ξp

2

(
dEt⊥
dx

)2

+ f
2
(Et⊥)2

]
dx + const , (60)

with f = F/kT . ThisquadraticHamiltonian can be solved using equipartition.
Expand in normal modes (assumingEt⊥ = 0 atx = 0, L)

Et⊥ =
∑
n

sin
(nπx
L

)
Et (n)⊥ . (61)

Using the orthogonality of the functions on [0, L] gives

H ' 1

2
kT L

∑
n

(
ξp

2

n2π2

L2
+ f

2

)
(Et (n)⊥ )2. (62)

Equipartition gives 〈
(t (n)y )2

〉 = 〈(t (n)z )2
〉 = 2

L

1

ξp
n2π2

L2 + f
. (63)

The average length is

X '
∫
dx

(
1− 1

2

〈Et2⊥〉) (64)

= L
(

1−
∑
n

1

ξp
n2π2

L2 + f

)
. (65)

For a long chain the sum can be approximated by an integral, usingq = nπ/L anddq = π/L, to give

X

L
= 1− 1

π

∫ ∞
0

1

ξpq2+ f dq = 1− 1

2

(
kT

Fξp

)1/2

. (66)

Writing in terms of the forceF to give extension〈X〉

F = kT

ξp

1

4

1

(1−X/L)2 . (67)
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Notice the divergence forX → L is as(1 − X/L)−2 compared with the−1 power found for the ideal
polymer.

Marco and Siggia [2] suggest the interpolation formula

F ' kT

ξp

[
X

L
+ 1

4

1

(1−X/L)2 −
1

4

]
(68)

which agrees with the limiting results Eq. (57) and (67), and is close to their numerical results for intermediate
values.

Figure 2: Fit to worm-like chain model withL = 32.8µ andξp = 53.4nm (from Bustamante et al. [3])

To get a feel for the numbers considerλ-phage DNA. This molecule is found to haveξp ' 50nm,which
corresponds to 150 base pairs, i.e. the polymer is indeed stiff so thatξp is much longer than the monomer
length. Experiments are often done on molecules with lengths of several tens of microns. TakingL = 30µ
gives

〈
R2
〉 ∼ 2µ. The order of magnitude of the tensile forces to stretch the DNA is

kT

ξp
∼ 0.1pN (69)

so that for large extensions

F ∼ 0.1pN× 1

4 (1−X/L)2 . (70)

Such forces can be measured in single molecule experiments. The measured force-extension curves agree
well with the expression Eq. (68), see Fig. (2).

Polymers with repulsive interactions We can include some of the effect of the repulsive interaction by
supposing each monomer is surrounded by and excluded volumev, fixed by supposing that the interaction
strength is of orderkT for monomers separated byv1/3. This will tend to swell the polymer from the size
R ∼ √Na.
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In terms of random walks we might suppose that the walk is “self avoiding” rather than free. This is most
easily formulated on a lattice, where each link is a bond on the lattice. For a self avoiding random walk we
demand that the walk cannot visit a site that has previously been visited. This is a hard statistical mechanical
problem, since the constraints although local in space are nonlocal along the chain. Numerical simulations
give thescaling result

R ∼ Nν (71)

with the exponentν ' 0.588 in 3d.
Flory suggested a very simple approximation for calculating the effect of the excluded volume. He wrote

the free energy as the sum of the repulsive energy and the extra entropy for stretching the polymer. The
repulsive energy per monomer for a polymer ofN monomers occupying volumeR3 is estimated askT times
the number of monomers within the volumev, givingE ∼ NkT ×Nv/R3. The stretch entropy is given by
Eq. (14) with X→ R. Thus the total free energy is

F ∼ kT
(
N2v

R3
+ R2

Na2

)
. (72)

Minimizing with respect toR gives Eq. (71) with ν = 3/5. Note that this result is very close to the value
found from the self avoiding random walk on the lattice.

Polymers are usually in solution. The effective interaction of the monomers is given by the balance
of the self repulsion and the interaction with the solvent molecules. For a good solvent, the self repulsion
dominates, and the resultR ∼ N0.6 just calculated holds. For a poor solvent, the repulsive interaction with
the solvent dominates, and the effective interaction is negative. In this case the polymer collapses to a small
globule of sizeR ∼ N1/3. (Note that the confinement entropy Eq. (32) is not large enough to stop this
collapse.) By tuning a parameter (often the temperature) between these cases, a value can be found for which
the effective interaction is zero, and the polymer behaves as if ideal,R ∼ N1/2. This is known as atheta
solventor thetheta point.

Other References

A standard reference on polymers isThe Theory of Polymer Dynamicsby M. Doi and S. F. Edwards. Chapter
2 covers the equilibrium properties, at a more sophisticated level than I used. On the other handMolecular
Driving Forcesby KenA. Dill and Sarina Bromberg presents a discussion from the very beginning—chapters
32 and 33 are most relevant.

One of the first papers to describe the measurement of the elastic properties of a single DNA molecule
is Smith et al. [4]. A review of the theoretical ideas and experimental methods is by Strick et al. [5], and
Bouchiat et al. [6] give a critical analysis of the worm-like chain model. There are also nice experiments
done in Quake’s lab at Caltech [7]. You can find out whatλ-phage DNAis at the Molecular Gentics Workshop
website [8].

Another interesting application of statistical mechanics to DNA is the denaturing transition in which the
pair of polymers bound in the helix splits apart. The review by Michael Peyraud (see in particular §VI)
describes a simple model calculation.
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