
Physics 127a: Class Notes

Lecture 7: Canonical Ensemble – Simple Examples

The canonical partition function provides the standard route to calculating the thermodynamic properties of
macroscopic systems—one of the important tasks of statistical mechanics

Hamiltonian→ QN =
∑
j

e−βEj → free energyA(T , V,N)→ etc. (1)

A number of simple examples illustrate this type of calculation, and provide useful physical insight into the
behavior of more realistic systems. The following are simple because they are a collection of noninteracting
objects, which makes the enumeration of states easy.

Harmonic Oscillators

Classical The Hamiltonian for one oscillator in one space dimension is

H(x, p) = p2

2m
+ 1

2
mω2

0x
2 (2)

withm the mass of the particle andω0 the frequency of the oscillator. The partition function foroneoscillator
is

Q1 =
∫ ∞
−∞

exp

[
−β

(
p2

2m
+ 1

2
mω2

0x
2

)]
dx dp

h
. (3)

The integrations over the Gaussian functions are precisely as in the ideal gas, so that

Q1 = 1

h

(
2πm

β

)1/2( 2π

βmω2
0

)1/2

= kT

h̄ω0
, (4)

introducingh̄ = h/2π for convenience.
ForN independent oscillators

QN = (Q1)
N =

(
kT

h̄ω0

)N
(5)

and then

A = NkT ln

(
h̄ω0

kT

)
, (6)

U = NkT, (7)

S = Nk
[
ln

(
kT

h̄ω0

)
+ 1

]
, (8)

µ = kT ln

(
h̄ω0

kT

)
. (9)

Equation (7) is an example of the generalequipartition theorem: each coordinate or momentum appearing
as a quadratic term in the Hamiltonian (e.g.p2/2m, Kx2/2) contributes1

2kT to the average energy in the
classical limit. The proof is an obvious generalization of the integrations done in Eq. (4)—seePathria §3.7
for a more formal proof.

For oscillators in 3 space dimensions, replaceN by 3N in the above expressions.
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Quantum The quantum calculation is very easy in this case. The energy levels of a single, one dimensional
harmonic oscillator are

Ej = (j + 1
2)h̄ω0 (10)

so that

Q1 =
∑
j

e−β(j+1/2)h̄ω0 (11)

= e−βh̄ω0/2

1− e−βh̄ω0
= 1

2 sinh(βh̄ω0/2)
. (12)

ForN one dimensional oscillatorsQN = (Q1)
N from which the thermodynamic behavior follows

A = NkT ln [2 sinh(βh̄ω0/2)] = N
[

1

2
h̄ω0+ kT ln

(
1− e−βh̄ω0

)]
, (13)

U = 1

2
Nh̄ω0 coth(βh̄ω0/2) = Nh̄ω0

[
1

2
+ 1

eβh̄ω0 − 1

]
. (14)
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Specific heat ofN one dimensional harmonic oscillators scaled toNk as a function of temperature (scaled
to h̄ω0/k).

It is interesting to focus on the specific heat

C = ∂U

∂T
= Nk(βh̄ω0)

2 eβh̄ω0(
eβh̄ω0 − 1

)2 . (15)

For T → ∞, β → 0 and the exponentials can be expanded, and we find the classical, equipartition result
C = Nk. For any finite temperature the specific heat is reducedbelow the classical result, and for low
temperatureskT � h̄ω0 the exponentials are large andC ' Nk(h̄ω0/kT )

2e−h̄ω0/kT so that the specific heat
is exponentially small. The results are plotted above. These results, withN → 3N , are theEinstein model
for the specific heat of the phonons in a solid.

Paramagnetism

ConsiderN magnetic momentsµ in an applied magnetic fieldB. There is competition between the magnetic
energy of sizeµB which tends to align the moments along the field, and the thermal fluctuations.
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Classical vector spins The Hamiltonian is

H = −
N∑
i=1

Eµ · EB = −µB
N∑
i

cosθi (16)

taking the fieldEB to be in thez direction andθi is the polar angle of theith moment. This gives the partition
functionQN = (Q1)

N with

Q1 =
∫
d� eβµB cosθ (17)

with ∫
d� =

∫ 2π

0
dφ

∫ π

0
sinθdθ (18)

the integral over all angles.
The averagez magnetic moment is〈Mz〉 = N 〈µz〉

〈µz〉 =
∫
d� µ cosθ eβµB cosθ∫

d� eβµB cosθ
= kT ∂ lnQ1

∂B
. (19)

The one-moment partition function is easily evaluated

Q1 = 2π
∫ 1

−1
d(cosθ)eβµB cosθ = 4π

sinh(βµB)

βµB
, (20)

so that
〈µz〉 = µL(βµB), (21)

with L theLangevin function

L(x) = cothx − 1

x
. (22)

Note thatL(x →∞)→ 1, and for smallx

L(x) ' x

3
− x

3

45
+ · · · . (23)

For large temperatures or small fields (smallβµB)

〈Mz〉 ' Nµ2B

3kT
. (24)

The linear increase with a small applied field is known as the magnetic susceptibilityχ = ∂ 〈Mz〉 /∂B|B→0,
so that

χ = Nµ2

3kT
. (25)

ThisT −1 susceptibility is known as aCurie susceptibility.
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Ising model This might correspond to a quantum spin-1
2(S = 1

2) system in which each spin has only two
possible orientations, or a classical spin with strong, uniaxial, crystalline anisotropy. The Hamiltonian is

H = −
∑
i

µiB (26)

with µi = ±µ the magnetic moment of theith spin. We assume there is no interactionbetweendifferent
spins.

There are only two states for a single spin so the calculationQ1 is very easy

Q1 = eβµB + e−βµB = 2 cosh(µB/kT ). (27)

Since the spins are non-interactingQN = (Q1)
N , and so

A(N, T ) = −NkT ln [2 cosh(µB/kT )] , (28)

U = −NµB tanh(µB/kT ). (29)
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Specific heat scaled toNk as a function of temperature scaled toµB/k for N momentsµ in a fieldB.

The specific heat is

C = Nk
(
µB

kT

)2 1

cosh2
(
µB

kT

) (30)

which is plotted in the figure. The specific heat is proportional toT −2 at high temperatures and exponentially
small at low temperatures. In between is a peak atkT ' µB known as a Schottky anomaly. Since we can
also understand the specific heat asC = T ∂S/∂T , we identify the anomaly with the decrease in entropy as
the moments become ordered along the field.
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Magnetization scaled toNµ as a function of temperature scaled toµB/k for N spin-12 objects.
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We are also interested in the average magnetic moment

〈Mz〉 =
∑

i µie
−βµiB∑

i e
−βµiB . (31)

Just as in calculating the average energy we see this is conveniently written

〈Mz〉 = kT ∂

∂B
lnQN = −∂A

∂B
(32)

(with partials at constantN, T ). This gives

〈Mz〉 = Nµ tanh

(
µB

kT

)
. (33)

At largefield or low temperature we get saturation〈Mz〉 ' Nµ, whereas atsmallfields orhigh temperature
the behavior is linear in the field〈Mz〉 ' Nµ2B/kT . The susceptibility is

χ = Nµ2

kT
. (34)

again of Curie form.
Pathria §3.9 studies the case of arbitraryS quantum spins.
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