Physics 127a: Class Notes

Lecture 7: Canonical Ensemble — Simple Examples

The canonical partition function provides the standard route to calculating the thermodynamic properties of
macroscopic systems—one of the important tasks of statistical mechanics

Hamiltonian— Qy = Ze‘ﬁEi — free energyA(T, V, N) — etc. 1)
J
A number of simple examples illustrate this type of calculation, and provide useful physical insight into the

behavior of more realistic systems. The following are simple because they are a collection of noninteracting
objects, which makes the enumeration of states easy.

Harmonic Oscillators

Classical The Hamiltonian for one oscillator in one space dimension is

p* 1
H(x, p) = o + éma)%xz (2)
with m the mass of the particle arg the frequency of the oscillator. The partition functionémeoscillator
is
00 2
p 1 dx dp
01 = /Oo exp[—ﬂ <% + Emwéxz)] - (3)
The integrations over the Gaussian functions are precisely as in the ideal gas, so that
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introducings = h/2m for convenience.
For N independent oscillators

kT \Y
0v =00 = (3.-) ©
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and then
A = NKT In <@) : (6)
kT
U = NkT, (7)
S = Nk [In (k—T> + 1} : (8)
f’ia)o
. ha)o

Equation ) is an example of the generadjuipartition theoremeach coordinate or momentum appearing
as a quadratic term in the Hamiltonian (epf,/2m, K x?/2) contribute%kT to the average energy in the
classical limit. The proof is an obvious generalization of the integrations done iMgséePathria 83.7
for a more formal proof.

For oscillators in 3 space dimensions, replatby 3N in the above expressions.



Quantum The quantum calculation is very easy in this case. The energy levels of a single, one dimensional
harmonic oscillator are

E; = (j + 3)hoo (10)
so that
01 = Ze—ﬂ(‘/-%l/Z)hwo (11)
j
—Bhewo/2 1
i = — ) (12)
1— e Phoo  2sinh(Bhwy/2)
For N one dimensional oscillator®@ y = (Q1)" from which the thermodynamic behavior follows
1
A = NkT In[2sinhBhwo/2)] = N [éhwo +kTIn(1- e—ﬂhwo)} , (13)
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Specific heat ofV one dimensional harmonic oscillators scaledvtbas a function of temperature (scaled

to fla)o/k).
It is interesting to focus on the specific heat
oU Bhwg
C = = Nk(Bhwy)?——. (15)
aT (eﬁhwo — 1)

ForT — oo, B — 0 and the exponentials can be expanded, and we find the classical, equipatrtition result
C = Nk. For any finite temperature the specific heat is redumeldw the classical result, and for low
temperaturesT < hwg the exponentials are large a@t~ Nk (hwo/ kT )%e"*0/kT so that the specific heat

is exponentially small. The results are plotted above. These resultsMvith 3N, are theEinstein model

for the specific heat of the phonons in a solid.

Paramagnetism

ConsiderN magnetic momentg in an applied magnetic fielfl. There is competition between the magnetic
energy of sizex B which tends to align the moments along the field, and the thermal fluctuations.



Classical vector spins The Hamiltonian is

N N
H=-Yji-B=-uB) cosf (16)
i=1 i

taking the fieldB to be in thez direction and; is the polar angle of theh moment. This gives the partition
functionQn = (Q1)" with

Q1= / dQ PP o (17)

2 b4
/a’Q:/ d¢>/ singdo (18)
0 0
the integral over all angles.

The average magnetic moment iéM,) = N {(u,)

with

dQ u cosp ePnBcos d1n
() = JdSpcoshe _ Qs (19)
[ dS efrboosd B

The one-moment partition function is easily evaluated

N .
01=2n /1d(COS<9)eﬂ“B cos — 47[%, (20)

so that
(1) = w L(BuB), (21)
with L theLangevin function
1
L(x) = cothx — —. (22)
X
Note thatL (x — oo) — 1, and for smalk
L=t 2y (23)
YE3 T
For large temperatures or small fields (sl B)

Nu?B
M) >~ .
(M) T

(24)

The linear increase with a small applied field is known as the magnetic suscepjib#ity (M) /dB|z_, o,
so that

_ N
©O3kT
This T~ susceptibility is known as @urie susceptibility

X (25)



Ising model This might correspond to a quantum s@(‘ﬂ = %) system in which each spin has only two
possible orientations, or a classical spin with strong, uniaxial, crystalline anisotropy. The Hamiltonian is

H=-% B (26)

with u; = +u the magnetic moment of thi¢gh spin. We assume there is no interactimtweerdifferent
spins.
There are only two states for a single spin so the calculadiois very easy
Q1= ePrB 4 e7PHB — 2 cosiuB/kT). (27)
Since the spins are non-interactigg, = (Q1)", and so
A(N,T) = —NkTIn[2cosRuB/kT)], (28)
U =—NuB tanh(uB/kT). (29)
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Specific heat scaled ¥k as a function of temperature scaledui/k for N momentsu in a field B.
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C_Nk<kT) costt (42) (30)

which is plotted in the figure. The specific heat is proportiondl td at high temperatures and exponentially
small at low temperatures. In between is a peakfat~ «B known as a Schottky anomaly. Since we can

also understand the specific heatias- T9S/9T, we identify the anomaly with the decrease in entropy as
the moments become ordered along the field.

The specific heat is

1+
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Magnetization scaled t&¥ . as a function of temperature scaledds/k for N spin—% objects.
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We are also interested in the average magnetic moment

_ Zi Mie—ﬂltiB
Just as in calculating the average energy we see this is conveniently written
ad dA
M,) =kT—n =—— 32
< z> 9B QN 9B ( )
(with partials at constany, 7). This gives
uB
M;) = Nutanh{ — ). 33
) = Nutann(7 ) 39)

At largefield orlow temperature we get saturatioi,) >~ N u, whereas asmallfields orhightemperature

the behavior is linear in the fieldM.) ~ Nu?B/kT. The susceptibility is
N u?

= —". 34

X=7 (34)

again of Curie form.
Pathria 83.9 studies the case of arbitrafyguantum spins.
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