
Physics 127a: Class Notes

Lecture 6: Canonical Ensemble

Discussion and Derivation

A system that can exchange energy via very weak contact with a temperature bath eventually comes to
equilibrium. Thecanonical ensembledescribes the statistical distribution in such a system. Why is very
weak contact with the reservoir important? Because now the energyE that isconservedby the internal
dynamics is no longer rigorously fixed as it is in an isolated system—note that although the coupling with the
reservoir is weak, we wait arbitrarily long for the system-reservoir to come to equilibrium. The dynamics of
the system remains dominated by the internal interactions, so the derivation of the phase-space distribution
in lecture 3 remains correct. Thus we must haveρ(q, p) = ρ(E) but nowE may change, and we need to
find the energy dependence. Another way of saying this:ρ(q, p) is constant over the constant energy surface
as in the microcanonical ensemble, and we need to relate theρ on different energy surfaces.

system

reservoir
Temperature T

To find the probability distribution over the states of thesystemin thecanonicalensemble we consider the
combinedsystem+reservoir as isolated, and described by themicrocanonicalensemble.

We will calculate the probabilityPj of finding the system in a particular microstatej with energy
Ej . The probabilityPj is proportional to the number of microstates of thereservoir consistent with this
system microstate, since for the combined system+reservoir each microstate is equally likely. The number
of microstates available in the reservoir depends onj through the energy: if the reservoir has energyE(r)

when the system is in microstatei it will have energyE(r) −1E with1E = Ej −Ei when the system is n
microstateEj .

Consider the ratio of probabilities for microstatesj andi

Pj

Pi
= 1×�(r)(E(r) −1E)

1×�(r)(E(r)) = exp
{[
S(r)(E(r) −1E)− S(r)(E(r))] /k} (1)

(the number of microstates is one for the system multiplied by� for the reservoir), and in the second
expression we have introduced the entropy of the reservoirS(r) = k ln�(r). Since the reservoir is assumed
large,1E is small compared toE(r) for any system changei to j , and so we can evaluate the quantity inside
the exponential as the first term in a Taylor expansion, to find

Pj

Pi
= exp

[
−Ej − Ei

kT

]
(2)

with T the temperature of the reservoir
1

T
= ∂S(r)

∂E(r)
. (3)
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This gives us the result for the probability of system microstatej in the canonical ensemble

Pj ∝ e−βEj with β = 1

kT
. (4)

The proportionality constant is fixed by normalizing the sum of probabilities to unity. It turns out to be
useful to focus the calculation on this sum, and we define this as thecanonical partition functionQN

QN(T , V,N) =
∑
j

e−βEj (5)

and then
Pj = Q−1

N e
−βEj . (6)

Further we define the free energyA(T , V,N)

A = −kT lnQN. (7)

Note that the probability distribution of the system in contact with the reservoir only depends on the
properties of the reservoir through the single parameterT . Also, we have not made use of any argument
depending on thesystembeing macroscopic, just that the reservoir is very large. The system may in fact be
microscopic, even a single state. The temperatureT in the expression is the temperature of the reservoir—for
a microscopic system its temperature is not well defined from internal quantities, and so is oftendefinedto
be that of the reservoir.

Relationship to Other Quantities and Thermodynamics

An obvious question is what is the ensemble average of the fluctuating energy of the system in the canonical
ensemble. We call this the internal energyU .

U = 〈E〉 =
∑
j

PjEj =
∑

j Eje
−βEj∑

j e
−βEj = −

1

QN

∂QN

∂β
. (8)

Thus we have various useful expressions

U = − ∂

∂β
lnQN = ∂(A/T )

∂(1/T )
= −T 2 ∂

∂T

(
A

T

)
, (9)

with all the partials taken at fixedN,V .
For a macroscopic system we expect all quantities to be dominated by the most probable value, and then

the mean is given by this value. Let’s look at this in more detail.
For a macroscopic system the energy levels become closely spaced, and we can introduce a continuous

densityg(E) giving the number of microstates per unit energy interval. Then

QN =
∑
j

e−βEj =
∫
dE g(E)e−βE. (10)

Comparing with the calculation of the entropy in an isolated system

g(E) = eS(E)/k/1 (11)

where1 is the energy band we defined for counting the number of states “at” energyE. So

QN =
∫
dE

1
e−β[E−T S(E)] . (12)
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(Similarly, we identify the probability of finding the system inany microstate at energyE asP(E) ∝
exp{−β[E − T S(E)]}, where the energy is from the Boltzmann factor and the entropy from counting the
states at this energy.) Now for a macroscopic systemE andS are extensive quantities ofO(N), and so the
exponential function isvery strongly peaked about the energyĒ maximizing the function, determined by
minimizingE − T S(E), i.e. the valueĒ given by

1

T
= ∂S

∂E

∣∣∣∣
E=Ē

. (13)

The integral may then be evaluated, and will be given by the height times a widthW . Taking logs

A = −kT lnQN = Ē − T S(Ē)− kT ln

(
W

1

)
. (14)

The last term is of order 1/N compared to the others, and may be ignored, so that

A ' Ē − T S(Ē). (15)

Furthermore because the width of the distribution over energies is very narrow

U ' Ē, (16)

and so
A ' U − T S(U). (17)

Equation (17) is what leads us to callA the free energy. Note that Eq. (13) gives us the usual equality of the
temperature of system and reservoir in equilibrium, with the temperature of the system defined in terms of the
energy derivative of the entropy at the most probable value of the energyĒ. Equation (16) is an example of
the statement that we can replace average quantities by their most probable values. Very strictly,A is defined
absolutely for the system in the canonical ensemble, and is not a fluctuating quantity, On the other hand the
energy, the entropy defined asS(E), the temperature defined as(∂S/∂E)−1, are fluctuating quantities, and
we would usually characterize them by their mean values. However the range of fluctuations is of relative
order 1/

√
N , and so the fluctuations are negligible in a macroscopic system.

Thermodynamic Identity

From Eq. (17) we have
dA = dU − T dS − SdT . (18)

But the thermodynamic identity (strictly at energyĒ and then replacinḡE byU ) is

dU = T dS − PdV + µdN. (19)

Together these give
dA = −SdT − PdV + µdN. (20)

Note again theT , V,N appear as the natural variables for the dependence ofA.
Equation (20) immediately gives us an alternative root for calculating thermodynamic quantities

S = −
(
∂A

∂T

)
N,V

, P = −
(
∂A

∂V

)
T ,N

, µ =
(
∂A

∂N

)
T ,V

. (21)

The free energy tells us the work available at constant temperature (andN )

dA = −pdV |T ,N (22)

the reason for its name.
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Return to the ideal, monatomic, classical gas

For the ideal, monatomic, classical gas

H =
3N∑
i=1

p2
i

2m
and

∑
j

→ 1

N !h3N

∫
. . .

∫
d3Nxd3Np (23)

wherepi are the 3N momentum components ofN particles in 3 dimensions. Thus

QN = 1

N !

[
1

h3N

∫
d3Nx

∫
d3Np exp

(
−β

∑ p2
i

2m

)]
. (24)

The quantity in the[ ] factorizes, so that

QN = 1

N !

[
1

h3

∫
d3x

∫
dpx e

−βp2
x/2m

∫
dpy e

−βp2
y/2m

∫
dpz e

−βp2
z /2m

]N
. (25)

Thed3x integral gives the volumeV , and each momentum integral is easy to do∫ ∞
−∞

dpxe
−βp2

x/2m = (2mkT )1/2
∫ ∞
−∞

e−s
2
ds = (2πmkT )1/2. (26)

Finally

QN = 1

N !

[
V

(
2πmkT

h2

)3/2
]N

(27)

giving for the free energy, using Stirling’s approximation lnN ! ' N lnN −N ,

A = −kT lnQN = NkT
{

ln

[
N

V

(
h2

2πmkT

)3/2
]
− 1

}
. (28)

Note the role of thethermal length

λ =
√

h2

2πmkT
(29)

which is the de Broglie wavelength of a particle with kinetic energy aboutkT . In terms ofλ and the density
ρ = N/V

A = NkT [ln (ρλ3
)− 1

]
. (30)

The classical limit, where this is a good description, is preciselyρλ3 � 1, i.e. small probability of finding
two particles in thedegeneracy volumeλ3. If this is violated, we have to worry about quantum statistics
(Bose v. Fermi) and do a fully quantum calculation.

The thermodynamic properties of the ideal gas are now easily calculated

U = −T 2 ∂

∂T

(
A

T

)
N,V

= 3

2
NkT, (31)

S = −
(
∂A

∂T

)
N,V

= Nk
{

ln

[
V

N

(
2πmkT

h2

)3/2
]
+ 5

2

}
, (32)

µ =
(
∂A

∂N

)
T ,V

= kT ln

[
N

V

(
h2

2πmkT

)3/2
]
. (33)

These should be compared with the results derived in the microcanonical ensemble, using Eq. (31) to relate
E ' U to T—they are, of course, identical. The relative ease of the canonical calculation compared with
the microcanonical one should be noted.
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