
Physics 127a: Class Notes

Lecture 4: Entropy

Second Law of Thermodynamics

If we prepare an isolated system in a macroscopic configuration that is not the equilibrium one, the subsequent
evolution to equilibrium will lead to an increase of the entropyS. If the relaxation process passes through
macroscopically defined configurations we can define anS(t) that increases monotonically.

Note: Thermodynamics is only concerned with macroscopic states, i.e. ones that are essentially in
equilibrium under some macroscopic constraints. A good example is two blocks of material at different
temperatures. Thermodynamics tells you how to calculate the total entropy (e.g. integrate up the measured
specific heat from zero temperatureS = ∫

C(T )/T dT for each system and add). If the two blocks are
placed into contact, heat will flow between them until the temperature is equal, and you can again calculate
the entropy. The second law says it must have increased! If the thermal contact is weak so that at any instant
each body is effectively internally in equilibrium at some temperature, we can calculateS(t) and this will
increase monotonically.

Entropy in statistical mechanics

Consider an isolated macroscopic system ofN particles in a volumeV and with energyE. We define the
entropy as

S(E,N, V ) = k ln�(E,N, V ) (1)

where�(E,N, V ) is the number of accessible states at the given values ofE,N, V .
SinceE,N, andV are all fixed there is nothing here that can evolve, so we need to generalize slightly.

Suppose there is an internal macroscopic variableX (such as the partition of the total energy or number of
particles between two halves of the system) that can be used to constrain the system away from equilibrium.
Theentropyof the system in the macroscopic configurationX is related to statistical quantities via

S(E,N, V,X) = k ln�(E,N, V,X) (2)

where�(E,N, V,X) is the number of accessible states at the given values ofE,N, V (which are fixed in
an isolated system)and with the constraint given byX.

In these expressionsk is a constant known as the Boltzmann constant. (Sometimes I will write it as
kB .) The increase of entropy in the second law of thermodynamics corresponds to the evolution from aless
probableX (fewer accessible microstates, each equally likely) to a more probableX. Or to say it another
way, most microstates sampled by the dynamics will correspond to the “more probable”X. As we saw in
the coin-flip example, for macroscopic systems there are vastly more accessible states at the most probable
value ofX, so that the “likelihood” of evolving to a more probablyX becomes a certainty.

Any monotonic relationship betweenS and� would yield the increase ofS. The ln function is used
because we wantthe entropy for independent systems to be additive, as required for consistency with the
thermodynamic entropy. (If�1, �2 are the number of accessible states for the two independent systems,
then the total number of accessible states is�1�2).

Notice we are defining the entropy of asystem(as in thermodynamics) and it is only defined as a function
of a macroscopic configuration(i.e. for systems effectively in equilibrium under a macroscopic constraint).
This makes sense since the number of accessible states is only physically relevant if the system has time to
explore them (or at least a representative subset of them) at essentially fixedX. This is appropriate to match
to the thermodynamic notions ofS. Later we will talk about possibly more general reformulations in terms
of the entropy of anensemble, and the entropy ofmicroscopicallydefined configurations.
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Equilibration

Investigating the approach to equilibrium under the transfer of energy allows us to relate the temperature,
chemical potential, and pressure toS and so to the microscopic quantity�. Caluclating� from first principles
allows us to calculate these physical quantities.

Equilibration under the transfer of energy

Energy E1 Energy E2

JE

Consider an isolated system consisting of two subsystems that are in weak contact so that energy can flow
between them, but the individual number of particles and volumesN1, V1 andN2, V2 are fixed. The energies
of the subsytems areE1, E2 andE1+E2 = E, a constant. We want to know what is the partition of energy
in equilibrium, i.e. how much energy will be in subsytem 1 and how much in subsystem 2. For a particular
energy partition we have the number of accessible states for the configuration with subsystem 1 having energy
E1 out of the total energyE is

�(E1, E) = �1(E1)�2(E2) with E2 = E − E1, (3)

or in terms of the entropy
S(E1, E) = S1(E1)+ S2(E2). (4)

In terms of the general discussion,E1 is playing the role ofX. Note thatS1(E1), S2(E2) are the expressions
that would be obtained for the individual systems if they were each isolated.

Energy will flow in the direction that increases�, S, and the equilibrium partition will be the value of
E1 (and thenE2 = E − E1) that maximizes� andS. This is given by differentiation

∂S

∂E1
= 0 ⇒ ∂S1(E1)

∂E1
= ∂S2(E2)

∂E2
with E2 = E − E1. (5)

Thus the equilibration is given by the equality of the quantity∂S/∂E for each system. Thermodynamically
we associate equilibrium under energy transfer with equality of temperature, soT should be related to∂S/∂E.
Further considerations show the appropriate definition is

1

T
=
(
∂S

∂E

)
N,V

. (6)

where the fact thatN andV are constant in the differentiation is now noted. (Actually, see the homework,
many things would have been simpler if the “temperature” had been defined so that it corresponds to∂S/∂E.
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For example, who would be surprised that infinite beta-temperature, corresponding to our zero temperature,
is unreachable?).

Is the final entropy the sum of the entropies of the two subsystems for the equilibrium energy partition?
You might think the answer isNo, since the accessible states also include those with fluctuations ofE1 away
from the entropy-maximizing value. However there are sovastlymany more states at the most probable
value ofE1, that the extra states only change the size of the entropy by an amount less thanO(N), an amount
not of concern in the thermodynamic context.

Equilibration under the change of particles and energy

Number  N 1 Number  N 2

JN

JE

Similar considerations show that

S(N,N1) = S1(N1)+ S2(N −N2) (7)

should be maximized, so that (
∂S1

∂N1

)
=
(
∂S2

∂N2

)
. (8)

Thus in addition toT1 = T2 we getµ1 = µ2 where the chemical potentialµ is defined as

µ

T
= −

(
∂S

∂N

)
E,V

(9)

where the factor ofT and the minus sign are to get agreement with the conventional usage.

Equilibration under the change of volume and energy If we allow a movable piston between the two
subsystems, so thatV1 + V2 = V is fixed, but the individual volumes may change, similar arguments show
that in addition toT1 = T2 in equilibrium we must have(

∂S1

∂V1

)
=
(
∂S2

∂V2

)
. (10)

We associate the equilibrium under mechanical motion with equality of pressure,P1 = P2, which is consistent
with this result if we define

P

T
=
(
∂S

∂V

)
E,N

. (11)

You might ask what about equilibration under the change of volume but not energy. The same argument
would seem to implyP1/T1 = P2/T2. However this sort of contact does not correspond to any common
physical experiment, since if the volume changes the moving piston necessarily does work on the gas, and
so the energy changes.
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Entropy of the Classical Monatomic Ideal Gas

ForN particles the energy is

E =
3N∑
i=1

p2
i

2m
(12)

with pi the 3N components of momentum. The energy of the ideal gas does not depend on the position
coordinates. The entropy is determined by�(E) the number of states at energyE. First we will calculate
6(E) which is the number of states with energylessthanE.

Clearly

6(E) =
∫
. . .
∫
|p|<√2mE d

3Np
∫
. . .
∫
V n
d3Nx

Volume of phase space per state
(13)

where|p| is the length of the 3N dimensional momentum vector,d3Np denotes the integration over the 3N
momentum coordinates etc. Let’s look at each piece of this expression in turn.

•
∫
. . .
∫
|p|<√2mE d

3Np is the volume of a 3N dimensional sphere of radius
√

2mE which we write as

O3N(
√

2mE). This is just a geometrical calculation, which I will not go through (see, for example,
Appendix C of Pathria). For a sphere of radiusR in n dimensionsOn(R) = CnRn with

Cn = πn/2

n
2!

(14)

where the factorial of a half integral is defined in the usual iterative wayn! = n(n − 1)! and with
1
2! = √π/2. (This function can also be written in terms of the gamma function0(n) = (n− 1)!)

•
∫
. . .
∫
V n
d3Nx = V N

• The volume per state is arbitrary in a completely classical approach to the particle dynamics, which
only deals with continuum variables. It is useful here1 to make contact with quantum mechanics and
we find

Volume of phase space per state= h3NN ! (15)

Theh3N leads to an additive constant in the entropy per particle, and so is not too important. TheN !
part is essential to find an entropy that isextensive, and was a rather mysterious ad hoc addition in the
pre-quantum years this calculation was first done. The inclusion resolves theGibbs Paradox.

The factor ofh for eachx, p coordinate pair reflects the uncertainty principle

1x1px & h. (16)

More precisely, we imagine particles confined in a box of sideL. In quantum mechanics boundary
conditions are needed to define the wave function, yet in a macroscopic system we do not expect
the precise nature of the boundaries to affect extensive quantities such as the entropy. We therefore
choose the mathematically convenientperiodic boundary conditionsψ(x + L) = ψ(x) etc. (For a
more detailed account of other choices see Pathria §1.4.) This leads to wave functions which are the
products of exponentials

ψ(x1, x2 . . .) = e2πin1x1/L . . . (17)

1We could proceed completely classically, and then the entropy would end up defined only up to an additive constant that
depends on the choice of the volume of phase space per state. This might appear ugly, but since onlydifferencesof entropy have
any thermodynamic consequence, it is not a real problem.
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with n1, n2 . . . integers, so thatp1 = n12πh̄/L = n1h/L. The allowed momentum states form a
“cubic” lattice in 3N dimensional momentum space with cube edgeh/L and so the volume of phase
space per state is(h/L)3NL3N = h3N .

The factor ofN ! arises because from quantum mechanics we recognize thatidentical particlesare
indistinguishable. In a two-particle, one-dimensional system, for example, this means that the phase
space volumes with particle 1 atx, p and particle 2 atx ′, p′ is thesame stateas the one with particle
1 atx ′, p′, and particle 2 atx, p. So in this case 2 volumes ofh2 correspond to asinglestate. In the
N particle system in 3 dimensions there areN ! configurations of the particles amongst different phase
space volumes ofh3N that correspond to a single quantum state. This is theN ! factor that we must
include in the volume of phase space per state.

Note that for a phase space point with two or more particles having thesamecoordinates and momenta,
this correction factor is not correct. For example in the 2-particle one-dimension system there is a
single phase space volume corresponding to both particles atx, p, and also a single quantum state, so
no correction factor is needed. However the classical ideal gas is only a good description in the dilute,
high temperature limit, where the probability of finding two or more particles within the same volume
h3N in phase space is negligible, and so these contributions with the “wrong” correction factor can be
ignored. In fact this precisely defines the limit of a “classical gas” rather than a “quantum gas”. In fact
in the quantum limit, where these types of configurations become important, we truly need to worry
about quantum issues: for example, for a Fermion gas the state with two particles in the same phase
space volume is not allowed by the Pauli exclusion principle.

An aside: we are now in a position to fix the normalization of the phase space distributionρ(q, p). We
choose a normalization so thatρ(q, p) is the probability of finding the system in a quantum state (i.e. a
volume of phase spaceh3NN !) at q, p

ρ(q, p)
d3Nqd3Np

N !h3N
= dNE

NE
(18)

wheredNE is the number of members of the ensemble (of total numberNE) with phase space point in the
volumed3Nqd3Np atq, p. Note the normalization is∫

· · ·
∫
ρ(q, p)

d3Nqd3Np

N !h3N
= 1 (19)

For an isolated system in equilibrium where equal probabilities appliesρ = 1/�.
We can now calculate6(E)

6(E) = C3N

N !

[
V

h3
(2mE)3/2

]N
. (20)

It should be recognized that6(E) is a smoothed function, since we are counting the number of points on
the hypercubic momentum lattice of sideh/L inside a hypershpere, and this will jump discontinuously (see
Pathria Fig. 1.2). However the jumps areextremelyclosely spaced (an energy of ordere−N for largeN ) and
certainly of no concern in a macroscopic system.

Equally the number of statesat an energyE is zero for mostE, since the surface of the sphere will not
typically hit one of the discrete momentum points. (Alternatively,d6/dE is a set of delta-function spikes
at the points where6 jumps.) We need to define a smoothed�(E) by counting the number of states within
some small energy band1. (Then our ensemble of isolated systems would be defined as having this spread
of energies, etc.) Thus we define

� = d6

dE
1. (21)
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Since6 ∝ E3N/2, on taking logs we see

ln� = ln6 + ln(
3

2

N

E
1). (22)

The first term on the right hand side isO(N), compared to which the second term is negligible for avast
range of choices of1, and can be ignored for macroscopic systems. (For example, we might choose1 to
be some tiny fraction of a typical energy per particle.) So the size of the choice of energy band1 does not
matter, and we can approximate the number of states near the surface of the hypersphere by the total number
of states inside the sphere—such is the magic of high dimensions! Thus the entropy isS ' k ln6.

Now it is algebra. Use Stirling’s approximation

lnC3N ' 3N

2
ln π − 3N

2
ln

3N

2
+ 3N

2
(23)

lnN ! ' N lnN −N (24)

to find theSackur-Tetrodeexpression for the entropy of the classical ideal gas

S = Nk
{

ln

[
V

Nh3

(
4πmE

3N

)3/2
]
+ 5

2

}
. (25)

As promised, this is anextensivequantity.
From this expression it is easy to derive the basic thermodynamic results for the ideal classical monatomic

gas. To take derivatives it is convenient to write

S = Nk
[
lnV + 3

2
lnE − 5

2
lnN + consts

]
(26)

• E(T ): Use
1

T
=
(
∂S

∂E

)
N,V

to find E = 3

2
NkT (27)

and so the specific heat at constant volume

CV =
(
∂E

∂T

)
V

= 3

2
Nk (28)

• Ideal gas law: use
P

T
=
(
∂S

∂V

)
E,N

to find PV = NkT . (29)

Note that

P = 2

3

E

V
(30)

a result that can be derived directly and generally usingP = −(∂E/∂V )S .
• Specific heat at constant pressure: we must include the work done against the pressure as the volume

changes

CP = d

dT
(E + PV ) = 5

2
Nk (31)

so thatγ = CP/CV = 5/3. Check that if you write the entropy as a function ofN, T , P i.e.
S = S(N, T , P ) then you can calculateCP asT (∂S/∂T )N,P .
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• Constant entropy: for changes of a gas volume at constant entropy (andN of course) we have

VE3/2 = const, (32)

which leads to

V T 3/2 = const, (33a)

PV 5/3 = const. (33b)

• Chemical potential: because of the overallN factor the constants in the entropy expression are important
when we calculateµ = −T (∂S/∂N)E,V

µ = −kT ln

[(
V

Nh3

)(
4πmE

3N

)3/2
]
. (34)
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