Physics 127a: Class Notes

Lecture 4: Entropy
Second Law of Thermodynamics

If we prepare an isolated system in a macroscopic configuration that is not the equilibrium one, the subsequent
evolution to equilibrium will lead to an increase of the entragpylf the relaxation process passes through
macroscopically defined configurations we can defind@nthat increases monotonically.

Note: Thermodynamics is only concerned with macroscopic states, i.e. ones that are essentially in
equilibrium under some macroscopic constraints. A good example is two blocks of material at different
temperatures. Thermodynamics tells you how to calculate the total entropy (e.g. integrate up the measured
specific heat from zero temperatufe= [ C(T)/T dT for each system and add). If the two blocks are
placed into contact, heat will flow between them until the temperature is equal, and you can again calculate
the entropy. The second law says it must have increased! If the thermal contact is weak so that at any instant
each body is effectively internally in equilibrium at some temperature, we can caldilatand this will
increase monotonically.

Entropy in statistical mechanics

Consider an isolated macroscopic systenigbarticles in a volumé’/ and with energyr. We define the
entropy as
S(E,N,V)=k INQ(E,N, V) (1)

whereQ (E, N, V) is the number of accessible states at the given valués of, V.

SinceE, N, andV are all fixed there is nothing here that can evolve, so we need to generalize slightly.
Suppose there is an internal macroscopic variab(guch as the partition of the total energy or number of
particles between two halves of the system) that can be used to constrain the system away from equilibrium.
The entropyof the system in the macroscopic configuratioris related to statistical quantities via

S(E,N,V,X)=k INQ(E, N, V, X) 2)

whereQ(E, N, V, X) is the number of accessible states at the given valués of, V (which are fixed in
an isolated systengnd with the constraint given hy.

In these expressionisis a constant known as the Boltzmann constant. (Sometimes | will write it as
kg.) The increase of entropy in the second law of thermodynamics corresponds to the evolutiordssm a
probableX (fewer accessible microstates, each equally likely) to a more prolabl@r to say it another
way, most microstates sampled by the dynamics will correspond to the “more proBabkes we saw in
the coin-flip example, for macroscopic systems there are vastly more accessible states at the most probable
value ofX, so that the “likelihood” of evolving to a more probabtybecomes a certainty.

Any monotonic relationship betweehiand 2 would yield the increase of. The In function is used
because we warthe entropy for independent systems to be addiigerequired for consistency with the
thermodynamic entropy. (If2;, 2, are the number of accessible states for the two independent systems,
then the total number of accessible stateRif5).

Notice we are defining the entropy o$gstenias in thermodynamics) and it is only defined as a function
of amacroscopic configuratiofi.e. for systems effectively in equilibrium under a macroscopic constraint).
This makes sense since the number of accessible states is only physically relevant if the system has time to
explore them (or at least a representative subset of them) at essentiall¥ fiXéds is appropriate to match
to the thermodynamic notions 6f Later we will talk about possibly more general reformulations in terms
of the entropy of arnsembleand the entropy aficroscopicallydefined configurations.



Equilibration

Investigating the approach to equilibrium under the transfer of energy allows us to relate the temperature,
chemical potential, and pressurestand so to the microscopic quantfdy Caluclating®2 from first principles
allows us to calculate these physical quantities.

Equilibration under the transfer of energy
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Consider an isolated system consisting of two subsystems that are in weak contact so that energy can flow
between them, but the individual number of particles and volused; andN,, V, are fixed. The energies

of the subsytems arg,, E; andE1 + E, = E, a constant. We want to know what is the partition of energy

in equilibrium, i.e. how much energy will be in subsytem 1 and how much in subsystem 2. For a particular
energy partition we have the number of accessible states for the configuration with subsystem 1 having energy
E out of the total energy is

Q(El, E) = Ql(El)Qz(Ez) with E,=F — Eq, (3)

or in terms of the entropy
S(E1, E) = S1(E1) + S2(E2). 4)

In terms of the general discussiaty, is playing the role ofX. Note thatS;(E1), S»(E>) are the expressions
that would be obtained for the individual systems if they were each isolated.
Energy will flow in the direction that increas€xs S, and the equilibrium partition will be the value of
E; (and thenE, = E — E;) that maximize<2 andS. This is given by differentiation
aS N 081(E1)  9S2(E»)

=0

92 = with E, = E — E. 5
dE, dE, dE, 2 ! ©)

Thus the equilibration is given by the equality of the quaniiyd E for each system. Thermodynamically
we associate equilibrium under energy transfer with equality of temperaturestsmuld be related @S /9 E .
Further considerations show the appropriate definition is

1 aS

—=|— . (6)

T IE )y y
where the fact thaVv andV are constant in the differentiation is now noted. (Actually, see the homework,
many things would have been simpler if the “temperature” had been defined so that it correspdydgio



For example, who would be surprised that infinite beta-temperature, corresponding to our zero temperature,
is unreachable?).

Is the final entropy the sum of the entropies of the two subsystems for the equilibrium energy partition?
You might think the answer i§lo, since the accessible states also include those with fluctuatidfisavfiay
from the entropy-maximizing value. However there arevastly many more states at the most probable
value of E;, that the extra states only change the size of the entropy by an amount leég figran amount
not of concern in the thermodynamic context.

Equilibration under the change of particles and energy
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Similar considerations show that
S(N, N1) = S1(N1) + S2(N — Np) (7)

()= (o) ®

Thus in addition tdl; = T, we getu1 = o where the chemical potentialis defined as

(3,

where the factor of" and the minus sign are to get agreement with the conventional usage.

should be maximized, so that

Equilibration under the change of volume and energy If we allow a movable piston between the two
subsystems, so th# + V, = V is fixed, but the individual volumes may change, similar arguments show
that in addition tal; = T> in equilibrium we must have

N N
1) = (22). (10)
A% Vs

We associate the equilibrium under mechanical motion with equality of preggute P, which is consistent

with this result if we define » 35
g (-) . (11)
T A% EN

You might ask what about equilibration under the change of volume but not energy. The same argument
would seem to implyP,/T1 = P,/ T». However this sort of contact does not correspond to any common
physical experiment, since if the volume changes the moving piston necessarily does work on the gas, and
so the energy changes.



Entropy of the Classical Monatomic Ideal Gas

For N particles the energy is

(12)

with p; the 3V components of momentum. The energy of the ideal gas does not depend on the position
coordinates. The entropy is determined®yE) the number of states at energy First we will calculate
¥ (E) which is the number of states with eneillggsthanE.

Clearly
f"'f\p|<md3pr"'fv'l dsNX

Y(E) =
(E) Volume of phase space per state

(13)

where|p| is the length of the 8 dimensional momentum vectei®" p denotes the integration over they3
momentum coordinates etc. Let’s look at each piece of this expression in turn.

* [ [ y-vanz @®" p is the volume of a B dimensional sphere of radiug2m E which we write as

O3y (v/2mE). This is just a geometrical calculation, which I will not go through (see, for example,
Appendix C of Pathria). For a sphere of rad®i$n n dimension0,,(R) = C, R" with

n.n/2

C, = 0 (14)

NS

where the factorial of a half integral is defined in the usual iterative mlayx n(n — 1)! and with
%! = /7 /2. (This function can also be written in terms of the gamma fundfion = (n — 1)!)

J f...fv,ld3Nx=VN

» The volume per state is arbitrary in a completely classical approach to the particle dynamics, which
only deals with continuum variables. It is useful héte make contact with quantum mechanics and
we find
Volume of phase space per statgi®¥ N! (15)

Theh®N leads to an additive constant in the entropy per particle, and so is not too importany¥.! The
part is essential to find an entropy thaeigensiveand was a rather mysterious ad hoc addition in the
pre-quantum years this calculation was first done. The inclusion resolvE&slihe Paradox

The factor ofx for eachx, p coordinate pair reflects the uncertainty principle
AxApy > h. (16)

More precisely, we imagine particles confined in a box of diddn quantum mechanics boundary
conditions are needed to define the wave function, yet in a macroscopic system we do not expect
the precise nature of the boundaries to affect extensive quantities such as the entropy. We therefore
choose the mathematically convenig@etriodic boundary conditiong (x + L) = ¢ (x) etc. (For a
more detailed account of other choices see Pathria §1.4.) This leads to wave functions which are the
products of exponentials

W (xy, xp...) = eZFimx/L (17)

1we could proceed completely classically, and then the entropy would end up defined only up to an additive constant that
depends on the choice of the volume of phase space per state. This might appear ugly, but sidifferemigeof entropy have
any thermodynamic consequence, it is not a real problem.



with nq, n, ... integers, so thapy = m2rh/L = nih/L. The allowed momentum states form a
“cubic” lattice in 3NV dimensional momentum space with cube edgé and so the volume of phase
space per state {&/L)3N L3N = p3V,

The factor of N! arises because from quantum mechanics we recognizédiatical particlesare
indistinguishable In a two-particle, one-dimensional system, for example, this means that the phase
space volumes with particle 1 &af p and particle 2 at’, p’ is thesame statas the one with particle

1 atx’, p/, and particle 2 at, p. So in this case 2 volumes 6f correspond to ainglestate. In the

N patrticle system in 3 dimensions there afkconfigurations of the particles amongst different phase
space volumes of3" that correspond to a single quantum state. This is\théactor that we must
include in the volume of phase space per state.

Note that for a phase space point with two or more particles havirgptinecoordinates and momenta,

this correction factor is not correct. For example in the 2-particle one-dimension system there is a
single phase space volume corresponding to both partickesatnd also a single quantum state, so

no correction factor is needed. However the classical ideal gas is only a good description in the dilute,
high temperature limit, where the probability of finding two or more particles within the same volume
13N in phase space is negligible, and so these contributions with the “wrong” correction factor can be
ignored. In fact this precisely defines the limit of a “classical gas” rather than a “quantum gas”. In fact
in the quantum limit, where these types of configurations become important, we truly need to worry
about quantum issues: for example, for a Fermion gas the state with two particles in the same phase
space volume is not allowed by the Pauli exclusion principle.

An aside: we are now in a position to fix the normalization of the phase space distripdipp). We
choose a normalization so thatg, p) is the probability of finding the system in a quantum state (i.e. a
volume of phase spadé"N!) atq, p

d3qu3Np dNg

= 18
PG P) 1w N, (18)

whered Ny, is the number of members of the ensemble (of total numggrwith phase space point in the
volumed3V qd®N p atq, p. Note the normalization is

dSqu3Np
f"'fp(q,p)W=l (19)

For an isolated system in equilibrium where equal probabilities appliesl/ 2.

We can now calculatZ (E)

Y(E) = Can [K(ZmE)f**/Z]N. (20)
N! [ A3

It should be recognized that(E) is a smoothed function, since we are counting the number of points on
the hypercubic momentum lattice of sill¢L inside a hypershpere, and this will jump discontinuously (see
Pathria Fig. 1.2). However the jumps aeremelyclosely spaced (an energy of order" for large N) and
certainly of no concern in a macroscopic system.

Equally the number of stateg an energyE is zero for most, since the surface of the sphere will not
typically hit one of the discrete momentum points. (Alternativél}i,/d E is a set of delta-function spikes
at the points wher& jumps.) We need to define a smoothedE) by counting the number of states within
some small energy baml. (Then our ensemble of isolated systems would be defined as having this spread

of energies, etc.) Thus we define

dXx
Q="22A (21)
dE
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SinceX « E3N/?, on taking logs we see
3N
NQ=InX+In(z=A). 22
+InGG=4) (22)

The first term on the right hand side @3(N), compared to which the second term is negligible fmaat
range of choices oA\, and can be ignored for macroscopic systems. (For example, we might chdose
be some tiny fraction of a typical energy per particle.) So the size of the choice of energy et not
matter, and we can approximate the number of states near the surface of the hypersphere by the total number
of states inside the sphere—such is the magic of high dimensions! Thus the entSopykith .
Now it is algebra. Use Stirling’s approximation

3N 3N, 3N 3N
InC3N_7In7T—7In?+? (23)
INN!'~NInN—-N (24)

to find theSackur-Tetrodexpression for the entropy of the classical ideal gas

V. (4tmE\**| 5
As promised, this is aaxtensivejuantity.

From this expression itis easy to derive the basic thermodynamic results for the ideal classical monatomic
gas. To take derivatives it is convenient to write

3 5
S=Nk[InV+§InE—EInN—}-const% (26)
e E(T): Use
1 aS , 3
— = (—) to find E = —NkT 27)
T AE )y vy 2
and so the specific heat at constant volume
0E 3
Cy=|—|) ==Nk 28
y (BT)V ° (28)
* |ldeal gas law: use
P aS ,
—=\|— to find PV = NkT. (29)
T oV /)ewN
Note that o
P=—-— 30
3V (30)

a result that can be derived directly and generally uging —(0E/dV)s.

» Specific heat at constant pressure: we must include the work done against the pressure as the volume
changes

d 5
Cp=—(E+ PV)= =Nk 31
P dT( + PV) 5 (31)

so thaty = Cp/Cy = 5/3. Check that if you write the entropy as a function ¥f T, P i.e.
S = S(N, T, P)then you can calculat€p asT (0S/3T )y p-

6



» Constant entropy: for changes of a gas volume at constant entropyv(ahdourse) we have

V E¥? = const (32)
which leads to

VT¥? = const (33a)

PV>? = const (33b)

» Chemical potential: because of the ovepafactor the constants in the entropy expression are important
when we calculatgg = —T(0S/0N)g.v

oo () ()] "
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