
Physics 127a: Class Notes

Lecture 2: A Simple Probability Example

The “equally likely” of the fundamental postulate reminds us of a coin flip, and in fact a very simple
probability problem actually gives us useful insights into statistical mechanics issues. The problem is: What
is the probability of gettingm heads in a sequence ofN flipped coins? We will denote thisP(m,N). In
particular, we will compare the probability of gettingN/2 heads (m = N/2) with the probability of getting
N heads (m = N ).

This is actually the same problem as a number of simple, but not uninteresting, statistical mechanics
problems:

• For a magnetic system ofN noninteracting magnetic moments that can each point either “up” or
“down” (e.g. a set of spin-12 atoms) what is the probability of a state withm up moments andN −m
down moments, i.e. a magnetization of 2m−N times the individual moment?

• Given an ideal gas ofN molecules, what is the probability of findingm molecules in one half of the
box, andN − m molecules in the other half, and in particular the probability of an equal number of
molecules in each half, compared with the probability of all the molecules being in one half?

• A drunkard’s walk along a path, or a “one-dimensional random walk”. At each step the drunkard may
go one step forwards or one step backwards, with equal probability. What is the probability of finding
the drunkard at positionx afterN steps? This isP(m,N) with x = 2m − N (m forward steps and
N −m backward steps).

Back to the coin problem. Consider firstN = 4 coins. Since any sequence, e.g. HHTT or HTHT, is
equally likely (assuming unbiased coins) we can calculateP(m,4) by counting the number of sequences or
“microstates” that are consistent with each “macrostate”m

m microstates no. P(m,4)

0 TTTT 1 1
16 = 0.062 5

1 HTTT,THTT,TTHT,TTTH 4 4
16 = 0.25

2
HHTT,HTHT,THHT
HTTH,THTH,TTHH

6 6
16 = 0.375

3 THHH,HTHH,HHTH,HHHT 4 4
16 = 0.25

4 HHHH 1 1
16 = 0.062 5

AlreadyP(N/2) is several timesP(N), and the ratio increases rapidly asN increases.
The general expression forP(m,N) for two outcomesA andB with individual probabilitiespA and

pB = 1− pA is

P(m,N) = pmApN−mB

N !

m!(N −m)! (1)

known as thebinomial distribution. Here the first factor is the probability of a particular sequence withm

outcomesA, and the second factor counts how many such sequences there are. The coin problem is this result

with pA = pB = 1
2. It is then possible to show directly that for largeN (and see below)P(N/2, N) =

√
2
πN

andP(N,N) = 1
2N so that for largeN we seeP(N/2, N)≫ P(N,N).

You will investigateP(m,N) for largeN usingStirling’s approximationfor factorials of large numbers
in the homework. We can actually get the interesting properties from a couple of simple arguments and a
profound result. The simple arguments are:
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Mean: The mean or average value of the number of heads is

〈m〉 =
〈
N∑
i=1

xi

〉
(2)

wherexi is a random variable which takes on the values 1 (heads) with probability1
2 and 0 (tails) with

probability 1
2. The〈 〉 stand for the ensemble average. We can interchange the order of the sum and

the average, so

〈m〉 =
N∑
i=1

〈xi〉 = N

2
. (3)

Variance: The variance or mean square fluctuation in the number of heads is

σ 2
N =

〈(
N∑
i=1

xi − 〈m〉
)2〉
=
〈(

N∑
i=1

(
xi − 1

2

))2〉
(4)

=
〈
N∑
i=1

(
xi − 1

2

) N∑
j=1

(
xj − 1

2

)〉
(5)

=
〈
N∑
i=1

(
xi − 1

2

)2

+
N∑
i=1

N∑
j=1,
j 6=i

(
xi − 1

2

)(
xj − 1

2

)〉
. (6)

Interchanging the order of averaging and summing as before, the first term isN/4 (N terms each equal
to 1

4) and the second gives zero since the two factors are both equally likely to be±1
2. SoσN =

√
N/2,

which gives the “width” of the distribution.

Finally, we use thecentral limit theorem , which tells us that the probability distribution of a quantity
Q formed as the sum of a large number of random variables withany distribution (with finite mean and
variance) isGaussian, i.e.

P(Q) = 1√
2πσ

e
− (Q−Q̄)2

2σ2 (7)

with Q̄ the mean andσ 2 the variance.
Thus for largeN for the coin toss problem we have, sincem is the sum ofN random variablesxi ,

P(m,N) = 1√
2πσN

e
− (m−N/2)2

2σ2
N (8)

with σN =
√
N/2 as we have just calculated. Note that this expression forP(m,N) is accurate only for

m not too far from the most probable valueN/2 (i.e. not too manyσN away) — which however is the
only region where the probability is significantly nonzero. Where the probability isverysmall the result is
inaccurate. For example form = N we knowP(N,N) = 2−N = e−N ln 2, which is very different from the
result given by Eq. (8). As N gets large, the width of the probability distribution of the number of heads
m also becomes large, proportional to

√
N . But this issmall compared to the rangeN , and becomesvery

small in this comparison forN equal to the number of molecules in a macroscopic object, say 1024 (cf. the
gas-in-the-box problem).

The the number of heads is anextensivequantity — the mean value grows proportional to the size of the
systemN . It is often convenient to introduce an intensive variable, such as the fraction of headsf = m/N ,
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with a mean that does not grow with system size. Since it is natural to considerf as a continuous variable
for largeN , we introduce theprobability densityp(f ) such that the probability of a fraction betweenf and
f + df for smalldf is p(f )df . Then sinceP(fN,N) = p(f ) 1

N
we have

p(f ) = 1√
2πσ

e
− (f−1/2)2

2σ2 (9)

with σ = 1
2
√
N

. For the intensive variable the probability distribution gets narrower proportional toN−1/2

asN gets large. Again the Gaussian distribution is only good not too manyσ away from the most probable
value, i.e. forf within of orderN−1/2 of 1/2 — but again this is the only region wherep(f ) is significantly
nonzero. In fact the probability of any fractionf not equal to one half (e.g.f = 1/3 or f = 1/29) is
exponentially smallfor largeN , i.e. of ordere−aN with a a number of order unity that depends onf but not
N . For example the probability of finding on one side of the box a fractionf of gas molecules that is not
equal to one half (e.g. one third) is of order

P(f 6= 1

2
) ∼ 10−1024

(10)

i.e. 10−1000000000000000000000000. (Notea×1024 is of order 1024 for any reasonable numbera!) This is a number
that forall physical purposes is zero (much, much, much smaller than one over the number of atoms in the
universe etc.).

This way that probabilities become certainties forN large corresponding to the number of molecules in
a macroscopic sample, will be a recurring theme in the application of statistical mechanics of macroscopic
systems. In general we will find for the probability distribution of macroscopic quantities:

• For extensive quantities with a mean proportional toN (e.g. the total energy) fluctuations that are
relatively small of order

√
N with a Gaussian distribution about the mean;

• For intensive quantities with a mean of order unity (e.g. the temperature) small fluctuations of order
1/
√
N again with a Gaussian distribution about the mean

• The distribution is so narrow that we can replaces averages of quantities over the distribution by the
result evaluated at the most probably value.

• Fluctuations far away from the mean have a probability that is exponentially small inN , and for
N ∼ 1024 can be considered asneverhappening.
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