Physics 127a: Class Notes

Lecture 2: A Simple Probability Example

The “equally likely” of the fundamental postulate reminds us of a coin flip, and in fact a very simple
probability problem actually gives us useful insights into statistical mechanics issues. The problem is: What
is the probability of gettingn heads in a sequence df flipped coins? We will denote thi8 (m, N). In
particular, we will compare the probability of gettidgy/2 heads# = N /2) with the probability of getting
N headsf = N).

This is actually the same problem as a number of simple, but not uninteresting, statistical mechanics
problems:

» For a magnetic system a@¥ noninteracting magnetic moments that can each point either “up” or
“down” (e.g. a set of spin}— atoms) what is the probability of a state withup moments an@& — m
down moments, i.e. a magnetization @f 2 N times the individual moment?

» Given an ideal gas aV molecules, what is the probability of finding molecules in one half of the
box, andN — m molecules in the other half, and in particular the probability of an equal number of
molecules in each half, compared with the probability of all the molecules being in one half?

» Adrunkard’s walk along a path, or a “one-dimensional random walk”. At each step the drunkard may
go one step forwards or one step backwards, with equal probability. What is the probability of finding
the drunkard at position after N steps? This i (m, N) with x = 2m — N (m forward steps and
N — m backward steps).

Back to the coin problem. Consider firSt = 4 coins. Since any sequence, e.g. HHTT or HTHT, is
equally likely (assuming unbiased coins) we can calcufate, 4) by counting the number of sequences or
“microstates” that are consistent with each “macrostate”

| m | microstates | no. [ P(m, 4) |
0 [TTTT 1 | L=00625
1 [HTTT,THTTLTTHT,ITTH |4 | 2 =025
HHTT,HTHT, THHT 6
2 | HTTH.THTH,TTHH 6 | 15=0375
3 | THHH,HTHH,HHTH,HHHT | 4 | 2 =10.25
4 | HHHH 1 |+ =0.0625

Already P(N/2) is several times (N), and the ratio increases rapidly isncreases.
The general expression fdt(m, N) for two outcomesA and B with individual probabilitiesp, and

PB = 1- PaA is
P(m,N) = p pN —Nl 1
( ’ ) ATB m!(N — Hl)! ( )

known as thebinomial distribution Here the first factor is the probability of a particular sequence with
outcomesA, and the second factor counts how many such sequences there are. The coin problemis this result

with py = pp = % Itis then possible to show directly that for larye(and see belowP (N /2, N) = ,/%

andP(N,N) = ZiN so that for largeV we seeP(N/2, N) >> P(N, N).

You will investigateP (m, N) for large N usingStirling’s approximatiorfor factorials of large numbers
in the homework. We can actually get the interesting properties from a couple of simple arguments and a
profound result. The simple arguments are:



Mean: The mean or average value of the number of heads is

N
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wherex; is a random variable which takes on the values 1 (heads) with probépﬁiﬂ;d 0 (tails) with
probability%. The () stand for the ensemble average. We can interchange the order of the sum and
the average, so

N
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Variance: The variance or mean square fluctuation in the number of heads is
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Interchanging the order of averaging and summing as before, the first tdffd iV terms each equal
to ;11) and the second gives zero since the two factors are both equally Iikertté.bSomv =N/2,
which gives the “width” of the distribution.

Finally, we use theentral limit theorem, which tells us that the probability distribution of a quantity
QO formed as the sum of a large number of random variables avighdistribution (with finite mean and
variance) iS<Gaussiani.e.
1 _w-9?

P = 202 7
Q) «/Eoe (7)

with Q the mean and? the variance
Thus for largeN for the coin toss problem we have, singds the sum ofV random variables;,

_ (m=N/2?

P(m, N) = 2y (8)
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with oy = +/N/2 as we have just calculated. Note that this expressioPfer, N) is accurate only for
m not too far from the most probable valu®¥ /2 (i.e. not too many, away) — which however is the
only region where the probability is significantly nonzero. Where the probabilitgrigsmall the result is
inaccurate. For example fer = N we knowP (N, N) =27V = e~ N2 which is very different from the
result given by Eq.&). As N gets large, the width of the probability distribution of the number of heads
m also becomes large, proportional4@V. But this issmall compared to the rang¥, and becomesery
smallin this comparison foiV equal to the number of molecules in a macroscopic object, s&y(d0 the
gas-in-the-box problem).

The the number of heads is artensivejuantity — the mean value grows proportional to the size of the
systemN. It is often convenient to introduce an intensive variable, such as the fraction of fieads/N,
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with a mean that does not grow with system size. Since it is natural to consi@er continuous variable
for large N, we introduce th@robability densityp( f) such that the probability of a fraction betwegrand
f +df forsmalldf is p(f)df. Then sinceP(fN, N) = p(f)% we have

1 _ (=122

N ®)

with o = ﬁﬁ For the intensive variable the probability distribution gets narrower proportionsti¢?
asN gets large. Again the Gaussian distribution is only good not too maayay from the most probable
value, i.e. forf within of order N ~/2 of 1/2 — but again this is the only region whepé f) is significantly
nonzero. In fact the probability of any fractigh not equal to one half (e.gf = 1/3 or f = 1/29) is
exponentially smallor large N, i.e. of ordere=*" with a a number of order unity that depends fSibut not
N. For example the probability of finding on one side of the box a fracfiaf gas molecules that is not
equal to one half (e.g. one third) is of order

p(f) =

1 4
Pq¢§wdvﬁ (10)

i.e. 10~1000000000000000000000009 N oteq x 1074 is of order 16*for any reasonable numbe) Thisis a number
that forall physical purposes is zero (much, much, much smaller than one over the number of atoms in the
universe etc.).

This way that probabilities become certainties fbfarge corresponding to the number of molecules in
a macroscopic sample, will be a recurring theme in the application of statistical mechanics of macroscopic
systems. In general we will find for the probability distribution of macroscopic quantities:

» For extensive quantities with a mean proportionaiMde.g. the total energy) fluctuations that are
relatively small of order/N with a Gaussian distribution about the mean:;

 For intensive quantities with a mean of order unity (e.g. the temperature) small fluctuations of order
1/+/N again with a Gaussian distribution about the mean

» The distribution is so narrow that we can replaces averages of quantities over the distribution by the
result evaluated at the most probably value.

» Fluctuations far away from the mean have a probability that is exponentially smal| end for
N ~ 10%* can be considered agverhappening.
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