
Physics 127a: Class Notes

Lecture 19: Molecular Gases

Diatomic gases

Consider a molecule made up of two atomsA andB, and at temperatures much lower than an electronic
excitation energy (typically around 104K).

First let’s suppose that the temperature is high enough so that all the degrees of freedom can be treated
classically. This is the case ifkT � 1ε where1ε is the spacing between the quantized energy levels. (We
will see what these are below.) Of course the gas must not be at too high density or at too low temperature
when the gas becomes degenerate—in practice not an issue in bulk gases. The Hamiltonian for a single
molecule is

H(pA,pB, rA, rB) = p2
A

2mA
+ p2

B

2mB
+ V (|rA − rB |) (1)

and the partition function forN molecules isQN = QN
1 /N ! with

Q1 = 1

h6

∫
d3pA

∫
d3pB

∫
d3rA

∫
d3rB e

−βH . (2)

The momentum and the position integrals can, as is generally true in classical statistical mechanics, be
evaluated separately

Q1 = 1

h6

∫
d3pA

∫
d3pB exp

[
−β

(
p2
A

2mA
+ p2

B

2mB

)]
×
∫
d3rA

∫
d3rB exp(−βV ). (3)

Since the momentum terms in the Hamiltonian are quadratic, equipartition tells us that the contribution to
the internal energy per molecule is 6× 1

2kT (6 quadratic terms). For the position integrals we go to centre of
mass coordinateR and relative coordinater = rA − rB . There is no dependence of the Hamiltonian on the
centre of mass coordinate, and this integral just contributes a factor of the volume toQ1. If we expand the
potentialV (r) about the minimum to quadratic order, we get an additional quadratic term in the Hamiltonian,
and so by equipartition get an additional1

2kT contribution to the internal energy. Thus, altogether in the
classical limit

U

N
= 7

2
kT . (4)

(Note that we could evaluate the momentum integrals in terms of centre of mass momentum, two rotational
momenta, and the momentum of the relative coordinate, again giving a contribution 3kT to the internal
energy per molecule.)

For a quantum mechanical treatment we must first use the Hamiltonian to calculate the energy levels of
the internal degrees of freedom, then calculate the internal canonical partition functionj (T ) introduced in
the previous lecture. From this we can calculate the contributions to the thermodynamic quantities, e.g.

Uint

N
= kT 2∂ ln j (T )

∂T
. (5)

To a reasonable approximation the energy levels can be accounted for in terms of vibration and rotation
spectra

En,l ' (n+ 1

2
)h̄ω + l(l + 1)

h̄2

2I
. (6)

Typically the vibrational temperatureθv = h̄ω/k is about 103K, and the rotational temperatureθr = h̄2/2Ik
is 1− 100K (both are higher for lighter atoms). We will takeI andω to be constants for each molecule,
although more accurately the rotation spectrum will depend slightly on the vibration state.
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For the spectrum Eq. (6) the internal partition function separates into vibrational and rotational parts

j (T ) = jv(T )jr(T ). (7)

The vibrational part is the partition function of a harmonic oscillator that we have looked at before

jv(T ) = 1

2 sinh(h̄ω/2kT )
(8)

giving an extra contribution to the specific heat1C
(v)
V that isNk at high temperatures (cf. equipartition, one

kinetic one potential degree of freedom) and exponentially small forT � θr .
The rotational part is

jr(T ) =
∞∑
l=0

(2l + 1)e−l(l+1)θr /T (9)

since the degeneracy of the orbital angular momentum statel is 2l + 1. At low temperatures

j (T )→ 1+ 3e−θr /T , 1C
(r)
V = 12

(
θr

T

)2

e−2θr /T . (10)

At high temperatures we can use theEuler-Maclaurin series expansion (see, for example,Handbook of
Mathematical Functionsby Abramowitz and Stegun§3.6.28 or §25.4.7)

∞∑
n=0

f (n) =
∫ ∞

0
f (x)dx + 1

2
f (0)− 1

12
f ′(0)+ 1

720
f ′′′(0)+ · · · (11)

with f (x) = (2x + 1)e−x(x+1)θr /T . The integral gives the result

jr(T )→ T

θr
= 8π2I

h2
kT (12)

giving the equipartition specific heat1C(r)V = NkT (two kinetic degrees of freedom). This can also be
derived from the classical expression

jr(T )→ 1

h2

∫ ∞
−∞

dpθ

∫ ∞
−∞

dpφ

∫ π

0
dθ

∫ 2π

0
dφ e−βHr (13)

with

Hr = 1

2I

(
p2
θ +

p2
φ

sin2 θ

)
. (14)

Keeping further terms in the expansion (you actually need all the terms retained in Eq. (11)) gives thehigh
temperature expansion

jr(T )→ T

θr
+ 1

3
+ 1

15

θr

T
· · · (15)

1C
(r)
V

Nk
→ 1+ 1

45

(
θr

T

)2

+ · · · . (16)

An interesting conclusion is that as the temperature is lowered the specific heatincreasesaboveNk before
beginning to decrease at low temperatures. You can plot the full expression by evaluating and plotting Eq.
(9) with Mathematica etc.
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The specific heat of the nondegenerate gas

CV = 3

2
Nk +1C(v)V +1C(r)V (17)

changes from (3/2)Nk at low temperatures (only translational degrees of freedom excited) to (5/2)Nk for
θr . T . θv as the rotational degrees of freedom are excited, to (7/2)Nk at high temperatures when
the vibrational modes are excited to equipartition. The specific heat ratioγ = CP/CV = 1+ Nk/CV is
correspondingly temperature dependent. This is evident physically in the adiabatic gas lawPV γ = const, the
speed of sound in the gas, and other properties. So in this regards (internal degrees of freedom) the statistical
mechanics of common gases show the effects of discrete quantum energy levels at room temperature and
above.

Homonuclear molecules

Diatomic molecules of the typeA−A are particular interesting because thenuclear spindegrees of freedom
become coupled to theorbital degrees of freedom through thesymmetry restrictionof the quantum wave
function. This results in a rather pronounced peak in the specific heat (as the nuclear spins order and decrease
the entropy with decreasing temperature) at temperaturesmuchhigher than any interaction energy of the
nuclear spins.

The wavefunction of the nuclear coordinates is the product of orbital and spin parts

ψN = ψN,r ψN,spin. (18)

HereψN,r(r ) is the rotation and vibration part of the molecular wave function.

Nuclear spin 0: The nuclei arebosons, and soψN must be symmetric under particle exchange. There is no
spin component, so this meansψN,r must be symmetric under particle exchange. But a rotation ofπ has the
effect of interchanging the nuclei. This multiplies the wave function by(−1)l with l the angular momentum
quantum number. Thus we deducel must beeven. The rotational contribution to the partition function is
then

jr =
∑
l even

(2l + 1)e−l(l+1)θr /T . (19)

Compared with the results forA−B molecules, the exponential dependence at low temperatures is stronger

j ' 1+ 5e−6θr /T + · · · , T → 0, (20)

and the high temperature result is half as big

jr ' 1

2

T

θr
, T →∞. (21)

(The later result follows from the first term (the integral) in the Euler-Maclaurin series withf (x) = (4x +
1)e−2x(2x+1)θr /T . It can also be derived classically by noting that the coordinate integral should only go over a
half sphere (a solid angle of 2π ) since otherwise the states are double counted.) The internal energy remains
the same in the high temperature limit.
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Figure 1: Specific heatCV /Nk for equilibrium, ortho, para, andmetastable(quenched from room temper-
ature) hydrogen as a function ofT/θr . The dashed line in the first panel is the fracttion of ortho hydrogen in
the equilibrium state.

Nuclear spin 1
2 (e.g. Hydrogen) The nuclei arefermionsandψN must beantisymmetric. To form an

antisymmetric total wavefunction we can use: nuclear spinI = 0, ψN,spin ∝↑↓ − ↓↑ (antisymmetric),
and a symmetric orbital wave function, i.e.l even; or nuclear spinI = 1, ψN,spin ∝↑↑,↑↓ + ↓↑, or ↓↓
(symmetric, degeneracy factor 3), antisymmetric orbital wave function, i.e.l odd. The equilibrium rotational
partition function is given by summing over all states

jr =
∑
spin
states

∑
orbital
states

e−l(l+1)θr /T = 3rodd+ reven (22)

with
r odd

even
=
∑
l odd
l even

(2l + 1)e−l(l+1)θr /T . (23)

Fromjr the contribution to the internal energy, specific heat, etc. may be calculated. Note that the ratio of
the probability of finding the nuclei in theI = 1 state relative to the probability of finding them in theI = 0
state is

P(I = 1)

P (I = 0)
= 3rodd

reven
(24)

which is 3 at high temperature but exponentially small 9e−2θr /T at low temperatures. This “ordering” of the
nuclear spins decreases the entropy per particle byk ln 3 as the temperature is lowered through aboutθr , and
gives a quite large specific heat peak (see figure below).

The weakness of the nuclear spin interaction with other degrees of freedom results in a very long equi-
libration time for the gas to come to equilibrium—in fact days at low temperatures for hydrogen. If the gas
is cooled over shorter periods, the nuclear spins remain in the original configuration. In fact the gas behaves
as a mixture of two types: one component (calledortho) with I = 1 and thermodynamic properties given
by rodd, and one component (calledpara) with I = 0 and thermodynamic properties given byreven. For
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example, if cooled from the 3 : 1 equilibrium ratio at room temperature the specific heat would be

Cquench= 3

4
Cortho+ 1

4
Cpara (25)

with

Cortho= Nk ∂
∂T

(
T 2 ∂

∂T
ln rodd

)
, (26a)

Cpara= Nk ∂
∂T

(
T 2 ∂

∂T
ln reven

)
. (26b)

Nuclear spin 1 (e.g. Deuterium) The nuclei are now Bosons so that the total wave function must be
symmetric. The total nuclear spinI = 0 (1 state) andI = 2 (5 states) states are symmetric in the spin
coordinates (see a quantum text book for adding angular momentum), and so must be correspond to even
l rotational states. The 3I = 1 states are antisymmetric in the spin coordinates, and so correspond to odd
l rotational states. I’ll leave you to work out the specific heats in various circumstances. An interesting
application is to the equilibrium constantK(T ) for the reaction

H2+D2
 HD. (27)
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