Physics 127a: Class Notes

Lecture 19: Molecular Gases
Diatomic gases

Consider a molecule made up of two atorsnd B, and at temperatures much lower than an electronic
excitation energy (typically around 48).

First let’'s suppose that the temperature is high enough so that all the degrees of freedom can be treated
classically. This is the casekfl’ 3> Ae whereAe is the spacing between the quantized energy levels. (We
will see what these are below.) Of course the gas must not be at too high density or at too low temperature
when the gas becomes degenerate—in practice not an issue in bulk gases. The Hamiltonian for a single
molecule is
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and the partition function foN molecules isQy = QY /N! with
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The momentum and the position integrals can, as is generally true in classical statistical mechanics, be
evaluated separately
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Since the momentum terms in the Hamiltonian are quadratic, equipartition tells us that the contribution to
the internal energy per molecule is<6%kT (6 quadratic terms). For the position integrals we go to centre of
mass coordinat& and relative coordinate=r 4, — r 3. There is no dependence of the Hamiltonian on the
centre of mass coordinate, and this integral just contributes a factor of the volughe tbwe expand the
potentialV (r) about the minimum to quadratic order, we get an additional quadratic term in the Hamiltonian,
and so by equipartition get an additior@dT contribution to the internal energy. Thus, altogether in the

classical limit U7
~ =T (4)
(Note that we could evaluate the momentum integrals in terms of centre of mass momentum, two rotational
momenta, and the momentum of the relative coordinate, again giving a contribéfioto3he internal
energy per molecule.)
For a quantum mechanical treatment we must first use the Hamiltonian to calculate the energy levels of
the internal degrees of freedom, then calculate the internal canonical partition fupctipmtroduced in

the previous lecture. From this we can calculate the contributions to the thermodynamic quantities, e.qg.
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To a reasonable approximation the energy levels can be accounted for in terms of vibration and rotation
spectra
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Typically the vibrational temperatute = 7w/ k is about 16K, and the rotational temperatute= #2/21k
is 1 — 100K (both are higher for lighter atoms). We will tafeandw to be constants for each molecule,
although more accurately the rotation spectrum will depend slightly on the vibration state.



For the spectrum Eq6] the internal partition function separates into vibrational and rotational parts

J(T) = ju(T)j(T). (7)
The vibrational part is the partition function of a harmonic oscillator that we have looked at before
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giving an extra contribution to the specific he‘afﬁ,”) that isNk at high temperatures (cf. equipartition, one
kinetic one potential degree of freedom) and exponentially smalf fex 6,.
The rotational part is
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since the degeneracy of the orbital angular momentum sia® + 1. At low temperatures
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At high temperatures we can use thaler-Maclaurin series expansion (see, for examghgndbook of
Mathematical Functionby Abramowitz and Stegu§B.6.28 or §25.4.7)
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with f(x) = (2x + 1)e**+D%/T The integral gives the result
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giving the equipartition specific heaIC(V’) = NkT (two Kkinetic degrees of freedom). This can also be
derived from the classical expression
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Keeping further terms in the expansion (you actually need all the terms retained ihljcgi¢es thehigh
temperature expansion

with
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An interesting conclusion is that as the temperature is lowered the specifintregtsesaboveNk before
beginning to decrease at low temperatures. You can plot the full expression by evaluating and plotting Eq.
(9) with Mathematica etc.



The specific heat of the nondegenerate gas
3
Cv = SNk + ACY + ACY (17)

changes from (8) Nk at low temperatures (only translational degrees of freedom excited) 2pN% for

6, < T < 6, as the rotational degrees of freedom are excited, t@)(Vk at high temperatures when

the vibrational modes are excited to equipartition. The specific heatyatioCp/Cy = 1+ Nk/Cy is
correspondingly temperature dependent. This is evident physically in the adiabatic gdgaw const, the

speed of sound in the gas, and other properties. So in this regards (internal degrees of freedom) the statistical
mechanics of common gases show the effects of discrete quantum energy levels at room temperature and
above.

Homonuclear molecules

Diatomic molecules of the typ& — A are patrticular interesting because thelear spirdegrees of freedom
become coupled to therbital degrees of freedom through tegmmetry restrictiorof the quantum wave
function. This results in a rather pronounced peak in the specific heat (as the nuclear spins order and decrease
the entropy with decreasing temperature) at temperatatehhigher than any interaction energy of the
nuclear spins.

The wavefunction of the nuclear coordinates is the product of orbital and spin parts

YN = YN, KZfN,spin- (18)

Hereyy (1) is the rotation and vibration part of the molecular wave function.

Nuclear spin 0: The nuclei ardbosonsand so/y must be symmetric under particle exchange. There is no
spin component, so this meag . must be symmetric under particle exchange. But a rotationiuds the
effect of interchanging the nuclei. This multiplies the wave functiori-b)’ with I the angular momentum
guantum number. Thus we deducmust beeven The rotational contribution to the partition function is
then
Jr= ) @2+ DT T, (19)
l even

Compared with the results fer — B molecules, the exponential dependence at low temperatures is stronger
j 1457/ 4. T — 0, (20)

and the high temperature result is half as big
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(The later result follows from the first term (the integral) in the Euler-Maclaurin series figith = (4x +
1)e~2@+D0/T |t can also be derived classically by noting that the coordinate integral should only go over a
half sphere (a solid angle ofi2 since otherwise the states are double counted.) The internal energy remains
the same in the high temperature limit.
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Figure 1: Specific heafy / Nk for equilibrium, ortho, para, andmetastabléquenched from room temper-
ature) hydrogen as a function 6f6,. The dashed line in the first panel is the fracttion of ortho hydrogen in
the equilibrium state.

Nuclear spin % (e.g. Hydrogen) The nuclei ardermionsand ¥y must beantisymmetric To form an
antisymmetric total wavefunction we can use: nuclear gpie 0, ¥y spin 14 — |1 (antisymmetric),
and a symmetric orbital wave function, i.eeven; or nuclear spih = 1, Yy spin <M1, t4 + {1, 0r ||
(symmetric, degeneracy factor 3), antisymmetric orbital wave functiori,oed. The equilibrium rotational
partition function is given by summing over all states

Jr= Z Z e DT = 3rodd + Teven (22)
spin orbital
statesstates
with
rodd = » (2 + e !TVHIT, (23)
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From j. the contribution to the internal energy, specific heat, etc. may be calculated. Note that the ratio of
the probability of finding the nuclei in the = 1 state relative to the probability of finding them in the- O

state is

P(I =0 B Teven

which is 3 at high temperature but exponentially smatt®/” at low temperatures. This “ordering” of the
nuclear spins decreases the entropy per particlelivg as the temperature is lowered through alspuand
gives a quite large specific heat peak (see figure below).

The weakness of the nuclear spin interaction with other degrees of freedom results in a very long equi-
libration time for the gas to come to equilibrium—in fact days at low temperatures for hydrogen. If the gas
is cooled over shorter periods, the nuclear spins remain in the original configuration. In fact the gas behaves
as a mixture of two types: one component (cakletho) with / = 1 and thermodynamic properties given
by roqd» @nd one component (callguhra) with I = 0 and thermodynamic properties given kyen For

(24)




example, if cooled from the 3 : 1 equilibrium ratio at room temperature the specific heat would be

3 1
Cquench: Zcortho+ Zcpara (25)
with
ad d
Cortho = Nka_T <T23_T In rodd) ) (26a)
9 [ 50
Cpara= Nkﬁ T 3T IN7even ) - (26b)

Nuclear spin 1 (e.g. Deuterium) The nuclei are now Bosons so that the total wave function must be
symmetric. The total nuclear spih= 0 (1 state) and = 2 (5 states) states are symmetric in the spin
coordinates (see a quantum text book for adding angular momentum), and so must be correspond to even
[ rotational states. The B = 1 states are antisymmetric in the spin coordinates, and so correspond to odd

[ rotational states. I'll leave you to work out the specific heats in various circumstances. An interesting
application is to the equilibrium constakit(7T) for the reaction

H,+ D, = HD. (27)
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