Physics 127a: Class Notes

Lecture 17: Ideal Fermi Gas
General Properties
For an ideal Fermi gas
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where the sums run over single particle stategich are usually labelled by the wave vedtoand the spin.
The fugacityz = ¢#* may run over the whole range9 z < oo, corresponding te-co < u < oo.

For a nonrelativistic gas in 3-dimensional free space= #%k?/2m and Y, — [dep(e) with the
density of states
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with g the spin degeneracy, usually 2 1. Proceeding as in the Boson case leads to expressions
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with A the thermal lengtlh /+/2rmkT and £, (z) Fermi functiongtheir properties are discussedRathtria
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High temperature expansions may be developed by expanding the integrands inasialthe Bose Case.

“Zero Temperature” Behavior

The Fermi occupation function
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tells us the occupation number of a single particle state at emeffiye function is 1 foe manykT less than
W, become% ate = u, and goes exponentially to zero fomanykT greater thamu. At low temperatures
the chemical potential is the dividing energy between occupied and empty states. The second form in Eq.
(6) shows the symmetry

nr(e) =

np(u+38) =1—np(u—9). (7)

At zero temperature the states are filled up to an energy calleletinei energye; = w(T = 0) and
empty above. The value ef: is fixed by demanding the total number of states with ¢ be equal to the

number of Fermiond/. For free particles; = ¢ defines a spherical surfacekirspacgk| = kr with kr the

Fermi wave vectorCounting the states inside the Fermi surface (vol@2we3/V per wave vector) gives
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The order of magnitude dfr is the reciprocal of the interparticle spacing. The corresponding Fermi energy

eF = hzk%/Zm is of order the zero point energy of a particle confined to this scale. This is typically a

large energy, e.g. & for electrons in a metal. Note that o (N/ V)3 sothatp(er) = dN/der|y =

(8N /2¢r), a result we will use below in the low temperature calculations.



Thermodynamic Properties The total internal energy at zero temperature (all kinetic!) is given by inte-
grating over the sphere up to radiys ClearlyU = c¢Nep with ¢ a constant of order unity. This shows us
thatU (T = 0) scales with the thermodynamic variables as

U « N>3v=283, (9)

So we have U - 3
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(fixing the constant = 3/5), and
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(as we know from general considerations). Tdegeneracy pressuigimportant in diverse areas of physics,
such as solid state physics and astrophysics.

Degeneracy pressure and white dwarf stars White dwarf stars are old stars of mass similar to our sun,
that have used up most of their nuclear fuel. A simple model of these stars supposes that they consist of fully
ionized Helium, i.e. a mixture of alpha-particles and electrons. For simplicity we consider the density to be
uniform, so that there ar¥ electrons andv/2 alpha particles in the volume of the star of radRisThe
electrons from a low temperaturel( « ¢r) degenerate electron gas, and the degeneracy pressure balances
the inward gravitational force. The Fermi energy turns out to be comparable to the electron rest mass, and
S0 we must consider a relativistic Fermi gas. The alpha particles provide charge neutrality, and dominate the
mass and so the gravitational attraction. Their kinetic energy (and contribution to the degeneracy pressure)
is small by the mass ratia, /4m ,.

First lets suppose the electrons are strongly relativistic, so the specteym=iscp. The total kinetic
energy is of ordel;;, ~ Nep ~ Nhc(N/V)Y3 ~ heN¥3/R. This provides the repulsive degeneracy
pressure. The gravitational potential energ¥js, ~ —G(Nm,)?/R. These expressions imply that for a
star mass/ ~ Nm,, satisfying
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the attractive forces overcome the repulsive one, so that so solution can be found—itwlzpsesin
this model. This limit is known as théhandrasekhar limjtand indeed more massive stars are believed to
collapse to neutron stars or black holes.

Ifwe instead suppose the classical limjit= p?/2m the kinetic energy scales &g, ~ N*3(h?/2m)/R?
and so collapse never occurs. Clearly we need to consider the full expression for the kinetic energy

g, = vm2c* + p2c2 — mc?. (13)

The pressure is calculated from the grand potential
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which becomes on integrating by parts
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We can now take th& — O limit
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and finally put in the form fo ,, use the spin degeneragy= 2, and introduce the scaled integration variable
y = p/mc to get
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where the functiom (x) is defined by
X y4
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o 1+ yz)l/zdy.

The functionA is rather boring. For smatl it varies asA (x) =~ §x5 (and therr drops out ofP andP oc R~5,
the classical limit) and for for large asA(x) ~ 2x*(so thatP o« cR~*, the strongly relativistic limit.
To determine the equilibrium radius of the star we minimize the total energy with respect to the radius
dE/dR = 0. For the kinetic energy
dExn 3V dE 3v
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and for the potential energy
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wherec is a fudge factor that depends on the density distribution. Minimizing the total energy gives
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balancing the outward pressure force on the surface with the inward gravitational force. Now it simply
remains to collect all the factors, usipg = #(372n)Y/3, n = N/(37R®%), M = 4m, x ¥. Defining the

mass scale
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and the length scale
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gives the final expression
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You can find a figure of the resulting solution fRy R as a function o\ / M, in Pathria88.4. Since the left
hand side of this equation approaches 1 for siR#lR, this shows there is a maximum = M, for which
solutions can be found, the Chandrasekhar limit.

Pauli spin susceptibility In a magnetic field, for charged particles such as the electron, the single particle
energies depends on the spin. For an electron, algmmt-icle

&0 = & —OUBB, (24)

whereo = £1 for thet and| spin respectively, anlz = efi/2mc is the Bohr magneton. The statistical
mechanics is now easily generalized to this case by replaciig By >, .
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The number of up or down spin particles is then
1

No (T, p, B) = ; g ey L (25)
If we defineNg as the number of particles ohespin in zero field
1
No(T, u) = Xk: e 1 (26)
then by inspection
No(T, u, B) = No(T, u + oupB). (27)
Then for smallB we have
N =Ny + N, = No(T, u + pB) + No(T, it — g B) = 2No(T, 1) + O(B?) (28a)
dN
M = pup(Ny — Ny) = No(T, u + upB) — No(T, o — upB) :2<a_ﬂ0) 5B (28b)
T,B=0

where the second equalities are true for smBalEquation 289 is the same as in zero field, and shows that
the chemical potential for fixet¥ is unchanged ab (B). Equation 28b) then gives us the susceptibility
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(usingN = 2N, for the total number of electrons). At zero temperafure: ¢r , SO
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where the first expression in quite general, and the second evaluated for nonrelativistic el&cteons

k;‘i x eiﬁ. This is thePauli susceptibility and is independent of temperature. At high temperatures

w=kTIN(NA3/V)and SOON /du = N/kT and
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the usualCurie susceptibilityof free spins. These susceptibilities aasitive i.e. paramagnetic
Charged particles also couple to a magnetic field via their charge, given by the Hamiltonian

I SN PV VRer:
H= Z 5P+ A (32)

with B = V x A. This turns out to lead to a diamagnetic contribution to the magnetic susceptibility coming
from circulating currents (diamagnetic because of Lenz’s law): at high temperatures

1 M%
—p B 33
XD —> 3’1 kT (33)
and at low temperatures (known as Landau diamagnetism)
1 2
Xp == —-n"E. (34)
2 EF

For both high and low temperatures, the diamagnetic susceptibility is a factor of 3 smaller, but of opposite
sign, than the paramagnetic susceptibilities E§6) &nd 31) coming from the coupling of the field to the
spins. The calculation of the diamagnetic component of the susceptibility involves the rather tricky solution
of the quantum mechanics of the Hamiltonian E§2)(giving “Landau levels”, which | will not describe

here.



Low-T Fermi Integrals

We are often interested in the low temperature thermodynamic properties at tempefatare: . Only
particle near within a fe T of the Fermi surface may be thermally excited, because of the Pauli exclusion
principle (cf. the form of: - (¢)). This means that themperature dependence of thermodynamic properties
for kT « er should only depend on properties near the Fermi surfaod in particular only op (e >~ f),
not on the whole density of states. This is important because in some applications of the results, e.g. to
electrons in metals, the functigne) might be quite complicated or even unknown in full. The following
method to evaluate low temperature Fermi integrals stresses this result. (The result is equivalent to Eq. (16)
of Appendix E ofPathria, although his derivation is rather obscure.)

Thermodynamic sums over the single particle (momentum) states lead to integrals over the single particle
energye of the form

I= /oodeqﬁ(s)n,v(e) (35)
0

whereny(e) = (e#¢~» 4 1)~! is the Fermi occupation function, agowill depend on the quantity being
calculated, e.gp = p(e) for I = N, ¢ = ep(e) for I = U (the internal energy), with (¢) the density of
states. For the low temperature expansion of these expression, since all the action is for an energy range of
orderkT about the Fermi energyr, we try to isolate this region of the energy integral.

First split up the integral

1 23 0
Iz/o dsq&(e)—/(; de ¢(e) [l—nF(s)]—i-/ de p(e)np(e). (36)
I

In the second two integrals, shift the integration variabie  + §

nw 0 o0
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12

For low temperatures the lower limit in the second integral can be replacedywith an error of order
e~PH (andp ~ ef). Then in this integral put — —8, and use the symmetry of the function

1= np(u—8) = np(u+9) (38)
to give
m )
I=fo de¢<s)+/0 [ +8) — (i — O nr(u+8) + O(eH). (39)

Now expanding (i +38) — ¢ (i — 8) as a Taylor expansion thand integrating ovet gives a series expansion
in (kT /er)?. We will just go up to quadratic order

I 2
I~ / de () + %(kT)Z(dqﬁ/ds) (40)
0 e=N
where we have used
fooch S _ 7TZ(kT)Z (41)
o Cery1T 120

In the second term, which is already of quadratic order we can replamethe zero temperature value
u >~ gr, and we split up the first term into two pieces

EF 2 2
1:/ de¢(8)+/ de d(e) + = (kT)?42
0 e 6 d8

F E=EF
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Note that the first term is temperature independent. The second two terms give the temperature dependence
throughu (T) and the explicit temperature dependence.
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Number of Particles This fixesu (T, N). We usep = p(g):

eF " 2 d
N :/ de p(e) +/ de p(e) + = (kT)?L
0 6 de

EF E=EF

Subtracting the zero temperature expression

EF
N :/ de p(e)
0
gives
" 72
/ de p(e) = — " (KT)(dp/de)
EF e=¢F
so that
7T2 2
(w—ep)p(er) >~ — F(kT) (dp/de)
or

7'[2
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Specific Heat UseCy = dU /0T |y y, and for the internal energy we usep = ep(e):

zd(slo)
de

Iz 72
U :/ deep(e) + g(kT)
0

E=EF

Differentiating with respect t@

F_zszd(SP)
3 de

"
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To evaluatelu/dT we differentiate Eq.43) usingd N /dT =0

T[_ZkZTd_’O
3 de

du
0~ —
() T +

E=EF

and substituting into Eq4Q) and then puttinge ~ e gives

Cy ~ ?k T,O(SF)

For the free particle spectrum= 7%k?/2m and therp(sr) = 3N /2¢f, SO that
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Internal Energy Another way to calculate the temperature dependence of the internal energy is to use
¢(e) = (¢ — ep)p(e). This gives

LAY (G Y

eF 3
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0 £
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(53)

e=¢fp

The second term is of ordér — )2 and so is negligible at ordgi?, and similarly in thes derivative we
can neglect the terte — er)dp/de, so that

eF 2
U= Ner+ / (e —ep)p(e) + %(kT)Zp(eF) (54)
0

and all the temperature dependence is in the second term. For the free, nonrelativistic gas

3 572 (kT2
U="SNeetae 2 (52) 4.1 55
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Other Results Some other results are

2 2 52 (kT \?
PV =-U==-Nep[l+—|— 56
S R (56)
The Helmholtz free energy is given byA = Ny — PV
3 5n2 (kT \?
A==-Nep[l——|— 57
averlt= o5 () 4o 57)

The entropy is derived a8A /9T |y  orfromCy =T 9S/0T |y y

2kT
S=NkZ " 4., (58)
2 EF
Note that the free energy spectrara: 1%k%/2m has been used in these expressions: the quadratic temperature
dependences could more generally be written in termg©f) as in Eq. §1).
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