
Physics 127a: Class Notes

Lecture 17: Ideal Fermi Gas

General Properties

For an ideal Fermi gas

� = −kT lnQ = −kT
∑
s

ln
(
1+ ze−βεs ) (1)

N =
∑
s

〈ns〉 =
∑
s

1

z−1eβεs + 1
(2)

where the sums run over single particle statess which are usually labelled by the wave vectork and the spin.
The fugacityz = eβµ may run over the whole range 0< z <∞, corresponding to−∞ < µ <∞.

For a nonrelativistic gas in 3-dimensional free spaceεk = h̄2k2/2m and
∑

s →
∫
dε ρ(ε) with the

density of states

ρ(ε) = g V

4π2

(
2m

h̄2

)3/2

ε1/2, (3)

with g the spin degeneracy, usually 2s + 1. Proceeding as in the Boson case leads to expressions

P

kT
= g

λ3
f5/2(z)

N

V
= g

λ3
f3/2(z) (4)

with λ the thermal lengthh/
√

2πmkT andfν(z) Fermi functions(their properties are discussed inPathtria
appendix E)

fν(z) = 1

(ν − 1)!

∫ ∞
0

yν−1

z−1ey + 1
dy. (5)

High temperature expansions may be developed by expanding the integrands in smallz as in the Bose Case.

“Zero Temperature” Behavior

TheFermi occupation function

nF (ε) = 1

eβ(ε−µ) + 1
= 1

2
+ 1

2
tanh

[
1

2
β (ε − µ)

]
(6)

tells us the occupation number of a single particle state at energyε. The function is 1 forεmanykT less than
µ, becomes12 at ε = µ, and goes exponentially to zero forε manykT greater thanµ. At low temperatures
the chemical potential is the dividing energy between occupied and empty states. The second form in Eq.
(6) shows the symmetry

nF (µ+ δ) = 1− nF (µ− δ). (7)

At zero temperature the states are filled up to an energy called theFermi energyεF = µ(T = 0) and
empty above. The value ofεF is fixed by demanding the total number of states withε < εF be equal to the
number of FermionsN . For free particles,ε = εF defines a spherical surface ink-space|k| = kF with kF the
Fermi wave vector. Counting the states inside the Fermi surface (volume(2π)3/V per wave vector) gives

g 4
3πk

3
F

(2π)3/V
= N i.e. kF =

(
6π2

g

N

V

)1/3

. (8)

The order of magnitude ofkF is the reciprocal of the interparticle spacing. The corresponding Fermi energy
εF = h̄2k2

F /2m is of order the zero point energy of a particle confined to this scale. This is typically a
large energy, e.g. 104K for electrons in a metal. Note thatεF ∝ (N/V )2/3 so thatρ(εF ) = ∂N/∂εF |V =
(3N/2εF ), a result we will use below in the low temperature calculations.
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Thermodynamic Properties The total internal energy at zero temperature (all kinetic!) is given by inte-
grating over the sphere up to radiuskF . ClearlyU = cNεF with c a constant of order unity. This shows us
thatU(T = 0) scales with the thermodynamic variables as

U ∝ N5/3V −2/3. (9)

So we have

µ(T = 0) = εF =
(
∂U

∂N

)
V

= 5

3

U

N
or U = 3

5
NεF (10)

(fixing the constantc = 3/5), and

P = −
(
∂U

∂V

)
N

= 2

3

U

V
(11)

(as we know from general considerations). Thisdegeneracy pressureis important in diverse areas of physics,
such as solid state physics and astrophysics.

Degeneracy pressure and white dwarf stars White dwarf stars are old stars of mass similar to our sun,
that have used up most of their nuclear fuel. A simple model of these stars supposes that they consist of fully
ionized Helium, i.e. a mixture of alpha-particles and electrons. For simplicity we consider the density to be
uniform, so that there areN electrons andN/2 alpha particles in the volume of the star of radiusR. The
electrons from a low temperature (kT � εF ) degenerate electron gas, and the degeneracy pressure balances
the inward gravitational force. The Fermi energy turns out to be comparable to the electron rest mass, and
so we must consider a relativistic Fermi gas. The alpha particles provide charge neutrality, and dominate the
mass and so the gravitational attraction. Their kinetic energy (and contribution to the degeneracy pressure)
is small by the mass ratiome/4mp.

First lets suppose the electrons are strongly relativistic, so the spectrum isεp = cp. The total kinetic
energy is of orderUkin ∼ NεF ∼ Nh̄c(N/V )1/3 ∼ h̄cN4/3/R. This provides the repulsive degeneracy
pressure. The gravitational potential energy isUpot ∼ −G(Nmp)2/R. These expressions imply that for a
star massM ∼ Nmp satisfying

M & (h̄c/G)3/2

mp
(12)

the attractive forces overcome the repulsive one, so that so solution can be found—the starcollapsesin
this model. This limit is known as theChandrasekhar limit, and indeed more massive stars are believed to
collapse to neutron stars or black holes.

If we instead suppose the classical limitεp = p2/2m the kinetic energy scales asUkin ∼ N5/3(h̄2/2m)/R2

and so collapse never occurs. Clearly we need to consider the full expression for the kinetic energy

εp =
√
m2c4+ p2c2−mc2. (13)

The pressure is calculated from the grand potential

P = gkT h−3
∫ ∞

0
ln[1+ e−β(εp−µ)]4πp2dp (14)

which becomes on integrating by parts

P = g

3h3

∫ ∞
0

1

eβ(εp−µ) + 1
p
dεp

dp
4πp2dp. (15)

We can now take theT → 0 limit

P = 4πg

3h3

∫ pF

0
p
dεp

dp
4πp2dp, (16)
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and finally put in the form forεp, use the spin degeneracyg = 2, and introduce the scaled integration variable
y = p/mc to get

P = π

3

m4c5

h3
A(pF/mc) (17)

where the functionA(x) is defined by

A(x) = 8
∫ x

0

y4

(1+ y2)1/2
dy. (18)

The functionA is rather boring. For smallx it varies asA(x) ' 8
5x

5 (and thenc drops out ofP andP ∝ R−5,
the classical limit) and for for largex asA(x) ' 2x4(so thatP ∝ cR−4, the strongly relativistic limit.

To determine the equilibrium radius of the star we minimize the total energy with respect to the radius
dE/dR = 0. For the kinetic energy

dEkin

dR
= 3V

R

dE

dV
= −3V

R
P = −4πR2P (19)

and for the potential energy
dEpot

dR
= d

dR

(
−αGM

2

R

)
= αGM2

R2
(20)

whereα is a fudge factor that depends on the density distribution. Minimizing the total energy gives

4πR2P = αGM2

R2
(21)

balancing the outward pressure force on the surface with the inward gravitational force. Now it simply
remains to collect all the factors, usingpF = h̄(3π2n)1/3, n = N/(4

3πR
3), M = 4mp × N

2 . Defining the
mass scale

M0 =
(

9

64

)(
3π

α3

)1/2
(h̄c/G)3/2

m2
p

∼ (Planck mass)3/2

(Proton mass)2
(22)

and the length scale

R0 = 3

8

(
3π

α

)1/2
(h̄c/G)1/2

mp

h̄

mc
∼ (Planck mass)

(Proton mass)
× (Compton wavelength of electron) (23)

gives the final expression
1

2x4
A(x)

∣∣∣∣
x=
(
M
M0

)1/2 R0
R

=
(
M

M0

)2/3

.

You can find a figure of the resulting solution forR/R0 as a function ofM/M0 in Pathria§8.4. Since the left
hand side of this equation approaches 1 for smallR/R0 this shows there is a maximumM = M0 for which
solutions can be found, the Chandrasekhar limit.

Pauli spin susceptibility In a magnetic field, for charged particles such as the electron, the single particle
energies depends on the spin. For an electron, a spin-1

2particle

εk,σ = εk − σµBB, (24)

whereσ = ±1 for the↑ and↓ spin respectively, andµB = eh̄/2mc is the Bohr magneton. The statistical
mechanics is now easily generalized to this case by replacing 2

∑
k by

∑
k,σ .

3



The number of up or down spin particles is then

Nσ(T , µ,B) =
∑

k

1

eβ(εk−σµBB−µ) + 1
. (25)

If we defineN0 as the number of particles ofonespin in zero field

N0(T , µ) =
∑

k

1

eβ(εk−µ) + 1
(26)

then by inspection
Nσ(T , µ,B) = N0(T , µ+ σµBB). (27)

Then for smallB we have

N = N↑ +N↓ = N0(T , µ+ µBB)+N0(T , µ− µBB) = 2N0(T , µ)+O(B2) (28a)

M = µB(N↑ −N↓) = N0(T , µ+ µBB)−N0(T , µ− µBB) ' 2

(
∂N0

∂µ

)
T ,B=0

µ2
BB (28b)

where the second equalities are true for smallB. Equation (28a) is the same as in zero field, and shows that
the chemical potential for fixedN is unchanged atO(B). Equation (28b) then gives us the susceptibility

χ = µ2
B

1

V

(
∂N

∂µ

)
T

(29)

(usingN = 2N0 for the total number of electrons). At zero temperatureµ = εF , so

χ = µ2
Bρ(εF ) =

3

2
n
µ2
B

εF
(30)

where the first expression in quite general, and the second evaluated for nonrelativistic electronsN ∝
k3
f ∝ ε

2/3
F . This is thePauli susceptibility, and is independent of temperature. At high temperatures

µ = kT ln(Nλ3/V ) and so∂N/∂µ = N/kT and

χ = nµ
2
B

kT
(31)

the usualCurie susceptibilityof free spins. These susceptibilities arepositive, i.e. paramagnetic.
Charged particles also couple to a magnetic field via their charge, given by the Hamiltonian

H =
∑
i

1

2m
[pi + e

c
A(xi)]2 (32)

with B = ∇ × A. This turns out to lead to a diamagnetic contribution to the magnetic susceptibility coming
from circulating currents (diamagnetic because of Lenz’s law): at high temperatures

χD →−1

3
n
µ2
B

kBT
, (33)

and at low temperatures (known as Landau diamagnetism)

χD →= −1

2
n
µ2
B

εF
. (34)

For both high and low temperatures, the diamagnetic susceptibility is a factor of 3 smaller, but of opposite
sign, than the paramagnetic susceptibilities Eqs. (30) and (31) coming from the coupling of the field to the
spins. The calculation of the diamagnetic component of the susceptibility involves the rather tricky solution
of the quantum mechanics of the Hamiltonian Eq. (32) giving “Landau levels”, which I will not describe
here.

4



Low-T Fermi Integrals

We are often interested in the low temperature thermodynamic properties at temperaturekT � εF . Only
particle near within a fewkT of the Fermi surface may be thermally excited, because of the Pauli exclusion
principle (cf. the form ofnF (ε)). This means that thetemperature dependence of thermodynamic properties
for kT � εF should only depend on properties near the Fermi surface, and in particular only onρ(ε ' εF ),
not on the whole density of states. This is important because in some applications of the results, e.g. to
electrons in metals, the functionρ(ε) might be quite complicated or even unknown in full. The following
method to evaluate low temperature Fermi integrals stresses this result. (The result is equivalent to Eq. (16)
of Appendix E ofPathria, although his derivation is rather obscure.)

Thermodynamic sums over the single particle (momentum) states lead to integrals over the single particle
energyε of the form

I =
∫ ∞

0
dε φ(ε) nF (ε) (35)

wherenF (ε) = (eβ(ε−µ) + 1)−1 is the Fermi occupation function, andφ will depend on the quantity being
calculated, e.g.φ = ρ(ε) for I = N , φ = ερ(ε) for I = U (the internal energy), withρ(ε) the density of
states. For the low temperature expansion of these expression, since all the action is for an energy range of
orderkT about the Fermi energyεF , we try to isolate this region of the energy integral.

First split up the integral

I =
∫ µ

0
dε φ(ε)−

∫ µ

0
dε φ(ε) [1− nF (ε)] +

∫ ∞
µ

dε φ(ε) nF (ε). (36)

In the second two integrals, shift the integration variableε = µ+ δ

I =
∫ µ

0
dε φ(ε)−

∫ 0

−µ
dδ φ(µ+ δ) [1− nF (µ+ δ)] +

∫ ∞
0
dδ φ(µ+ δ) nF (µ+ δ). (37)

For low temperatures the lower limit in the second integral can be replaced by−∞, with an error of order
ε−βµ (andµ ' εF ). Then in this integral putδ→−δ, and use the symmetry of thenF function

1− nF (µ− δ) = nF (µ+ δ) (38)

to give

I =
∫ µ

0
dε φ(ε)+

∫ ∞
0
dδ [φ(µ+ δ)− φ(µ− δ)] nF (µ+ δ)+O(ε−βµ). (39)

Now expandingφ(µ+δ)−φ(µ−δ) as a Taylor expansion inδ and integrating overδ gives a series expansion
in (kT /εF )2. We will just go up to quadratic order

I '
∫ µ

0
dε φ(ε)+ π2

6
(kT )2(dφ/dε)

∣∣∣∣
ε=µ

(40)

where we have used ∫ ∞
0
dδ

δ

eβδ + 1
= π2

12
(kT )2. (41)

In the second term, which is already of quadratic order we can replaceµ by the zero temperature value
µ ' εF , and we split up the first term into two pieces

I '
∫ εF

0
dε φ(ε)+

∫ µ

εF

dε φ(ε)+ π2

6
(kT )2

dφ

dε

∣∣∣∣
ε=εF

. (42)

Note that the first term is temperature independent. The second two terms give the temperature dependence
throughµ(T ) and the explicit temperature dependence.
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Number of Particles This fixesµ(T ,N). We useφ = ρ(ε):

N '
∫ εF

0
dε ρ(ε)+

∫ µ

εF

dε ρ(ε)+ π2

6
(kT )2

dρ

dε

∣∣∣∣
ε=εF

. (43)

Subtracting the zero temperature expression

N '
∫ εF

0
dε ρ(ε) (44)

gives ∫ µ

εF

dε ρ(ε) ' − π2

6
(kT )2(dρ/dε)

∣∣∣∣
ε=εF

(45)

so that

(µ− εF )ρ(εF ) ' − π2

6
(kT )2(dρ/dε)

∣∣∣∣
ε=εF

(46)

or

µ ' εF − π2

6
(kT )2(d ln ρ/dε)

∣∣∣∣
ε=εF

(47)

Specific Heat UseCV = ∂U/∂T |N,V , and for the internal energyU we useφ = ερ(ε):

U '
∫ µ

0
dε ερ(ε)+ π2

6
(kT )2

d(ερ)

dε

∣∣∣∣
ε=εF

. (48)

Differentiating with respect toT

CV ' µρ(µ) dµ
dT
+ π2

3
k2T

d(ερ)

dε

∣∣∣∣
ε=εF

. (49)

To evaluatedµ/dT we differentiate Eq. (43) usingdN/dT = 0

0' ρ(µ) dµ
dT
+ π2

3
k2T

dρ

dε

∣∣∣∣
ε=εF

(50)

and substituting into Eq. (49) and then puttingµ ' εF gives

CV ' π2

3
k2T ρ(εF ). (51)

For the free particle spectrumε = h̄2k2/2m and thenρ(εF ) = 3N/2εF , so that

CV ' 1

2
Nkπ2

(
kT

εF

)
. (52)
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Internal Energy Another way to calculate the temperature dependence of the internal energy is to use
φ(ε) = (ε − εF )ρ(ε). This gives

U −NεF =
∫ εF

0
(ε − εF )ρ(ε)+

∫ µ

εF

(ε − εF )ρ(ε)+ π2

6
(kT )2

d[(ε − εF )ρ]

dε

∣∣∣∣
ε=εF

. (53)

The second term is of order(µ− εF )2 and so is negligible at orderT 2, and similarly in theε derivative we
can neglect the term(ε − εF )dρ/dε, so that

U = NεF +
∫ εF

0
(ε − εF )ρ(ε)+ π

2

6
(kT )2ρ(εF ) (54)

and all the temperature dependence is in the second term. For the free, nonrelativistic gas

U = 3

5
NεF [1+ 5π2

12

(
kT

εF

)2

+ · · · ]. (55)

Other Results Some other results are

PV = 2

3
U = 2

5
NεF [1+ 5π2

12

(
kT

εF

)2

+ · · · ]. (56)

The Helmholtz free energyA is given byA = Nµ− PV

A = 3

5
NεF [1− 5π2

12

(
kT

εF

)2

+ · · · ]. (57)

The entropy is derived as∂A/∂T |N,V or fromCV = T ∂S/∂T |N,V

S = Nk π
2

2

kT

εF
+ · · · . (58)

Note that the free energy spectrumε = h̄2k2/2mhas been used in these expressions: the quadratic temperature
dependences could more generally be written in terms ofρ(εF ) as in Eq. (51).

7


	Physics 127a: Class Notes
	Lecture 17: Ideal Fermi Gas
	General Properties
	“Zero Temperature” Behavior
	Low-T Fermi Integrals



