Physics 127a: Class Notes

Lecture 16: Photons and Phonons

The thermodynamics of electromagnetic radiation in a cavity or of the vibrational motion of a crystal can be
treated in two equivalent ways:

1. an assembly of harmonic oscillators with quantized energy Iexzelrs%)hws, withw,, s = 1,2, ...
the frequencies of the normal modes of the cavity or crystal,

2. an ideal gas of identical, indistinguishable quanta (photons or phonons) with the energy of a single
guanta for the mode equal toiw;, so that forn quanta the contribution to the energynigw,. The
vacuum statevith no quanta present has the zero point en%rigys for each mode. The quanta are
Bosons, but with chemical potential= 0, since their number is not conserved.

The equivalence is fundamental in the quantum mechanics of these systems (wave-particle duality), but
can easily be seen from the consistency of the statistical mechanical description of the two approaches:
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Note that the canonical description of the first approach, and the grand canonical description of the second
approach withy = 0 are identical, and formulas based on either approach may be used. Inthese expressions,
and from now on, | have left out the zero point energy, since it is not relevant to the thermodynamics. (It is
also infinite for the e.m. case!)

Photons

For a cavity of sided. with periodic boundary conditions the modes are labelled by the wave vector

2T”(l, m, n) and one of 2 polarizations. The spectrunmis= ck, with ¢ the speed of light. As usual, fdr

large we replace the sum over discrete wave vectors by an integral over a continuum, which for integrands
that only depend om or K| is
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with the density of states (no of states per unit frequency integral) for unit volume
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The energy per volume is
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with ng(w) = (" — 1)~1 the Bose function. The energy spectrgiw) = g(w)hiwng(w) such that

= [e(w)dwis
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is known as the Planck distribution. Notice that without the quantum effects (e.g. expand at low frequencies,
or highT) e(w) = (72c®) % T w? which leads to a divergent total energy—one of the paradoxes of classical
mechanics that led to the quantum theory.

The total energy per volume is
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The integral evaluates t0%/15. The energy fluy from a nonreflecting surface at temperat@remust
balance the energy incident from the radiation giving
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yielding an expression for Stefan’s constant
The photons also exert a pressure on a bounding container. From the general arguments we know for the
spectrume; o k the pressure is
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This can also be derived usii)y = In Q, and integrating the resulting integral by parts.

Phonons

TheDebye modefor the vibrational degrees of freedom of a crystal is very similar, except we must recognize
that there are only a finite number of degrees of freedom in the crystal, so there is a maximum wave vector
cutoff to the sums.

In the Debye model the dispersion relation of the modespisroximatedby the small wave vector
expressions, which are linear—the longitudinal sound (spgedne polarization) and transverse sound
(speed:;, two polarizations) that can be derived using the equations of macroscopic elasticity theory. The
density of states, in analogy with Ed) (s
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wherec is an average speelfinedby this expression.
In the sum over modes we define a cutoff at alledye frequency p
wp

Z...—>v/ dw g(w) - - - (11)
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with wp defined such that the total number of modes is the number of dynamical degrees of freédom 3
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This gives the result
wp = (612N /V)Y?. (13)

This corresponds to a wave vector of order the inverse atomic spacing. The tempepattrdiwp/k
is called the Debye temperature. For many sofigsis comparable to room temperature (e.g diamond,
1850K;aluminum, 398Klead, 88K).



T/@p
Figure 1: Debye specific he@l/ Nk as a function of'/6),.

The energyU and specific heaf = dU/dT are now readily calculated. Scaling the integration variable

gives
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with xo = Aiwp/kT. This is theDebye formuldor the specific heat of a crystal. Notice that the result only
depends oiT'/6p. At small T the upper limit of the integration may be replacedday when the integral
evaluates to #%/15, so that
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ForlargeT , i.e.kT > hop we get (expand the exponentials in the integrand) the classical equipartition result
C — 3Nk. TheT? low temperature expression is only a good approximatiorvéoy low temperatures,
e.g. better than 3% below1y),.

Counting States in a Periodic System

We are often interested in periodic systems such as a crystal. The periodicity is definedattyabehich
is the set of points (lattice vectors) formed from prémitive lattice vectors, b, ¢

Xi.mn = la+ mb +nc, [, m, m integers. (16)

The vectors, b, c define a parallelepiped called thamitive unit cell that is the smallest repeat unit of the
structure (the red region in the figure). The volume of the primitive unit callisx c. The periodic structure
is formed by copying the contents of this parallelepiped to every lattice point. The states (phonons, electron
eigenstates, vibrational modes etc.) in a periodic system such as a crystal are no longer simple plane waves.
HoweverBloch’s theorentells us that the states are still labelled by a wave vektorhe displacement of
theith atom in the unit cell ax; ,, , in a vibrational mode, for example, in the state labelleklgkes the
form

u|(<i)(l? m, n) — eik-(la+mb+nc)e(i) (17)
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Figure 2: Lattice and reciprocal lattice for hexagonal crystal.
and an electron wavefunction at the point x; ,, , + Ax in the unit cell atx; ,, , can be written
Yr(x) =€ TP (Ax), (18)

In each case the wave vectotells us the phase change of the state on moving through a distance equal to a
lattice vector i.e. a displacement that leaves the periodic structure unchanged.

It is useful to define theeciprocal latticein the space of wave vectors. The primitive lattice vectors of
the reciprocal lattice are defined as

_anxc _ 2rcxa _Znaxb
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(19)
andA, B, C define a parallelepiped which is the unit cell of the reciprocal lattice (the blue region in the
figure). Any vector in the lattice

G=I'A+m'B+n'C, I',m’, n" integers. (20)

is areciprocal lattice vector

The importance of the reciprocal lattice vector is that wave vectors differing byCGafye. k and
k” = k 4+ G) define thesamestate via Eqs.1(7) and (L8) sinceG - X; ,,.,» = 27 x integer. This means thatin
counting the states we must restrict & lie within a single unit cell of the reciprocal lattic& he volume
of the reciprocal lattice unit cell is#/a - b x ¢ and the volume of-space per state isi8/ V (take periodic
boundary conditions over a volumé). Thus the number of wave vectors corresponding to distinct states
is V/a-b x ci.e. the number of unit cells in the crystdRather than the unit cell of the reciprocal lattice
delineated by, B, C is is convenient to use tHist Brillouin zonewhich retains the rotational symmetry of
the crystal. This unit cell may be defined as the region such that each poéarer to the origin than to any
other reciprocal lattice poinG (see Fig. ). Itis easily constructed by thmerpendicular planeonstruction:
draw planes that bisect each reciprocal lattice veGt@erpendicularly, and then the first Brillouiin zone is
the smallest volume entirely enclosed by the planes.

The thermodynamics is giving by summing over state of given frequenayenergys. We therefore
need to calculate the density of states. @.@v). Sinceg(w)dw gives the number of states betweemnd
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o + dw, this may be calculated as the volumeéispace between frequency surfagegndw + dw divided

by the volume ok-space per state:
Z — /da) g(w) (21)
k

1 ds,
g(w) = @ E
Herewg is the group speedw/dk (which gives us the distanei between surfaces separatedday), and
the integral is the surface integral over the constastrface.

with
(22)
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