
Physics 127a: Class Notes

Lecture 15: Statistical Mechanics of Superfluidity

Elementary excitations/quasiparticles

In general, it is hard to list the energy eigenstates, needed to calculate the statistical mechanics of an interacting
system. Indeed for a classical liquid, the statistical mechanics is very hard, and little is known except from
numerical calculations. For manyquantumsystems atlow temperaturesit is possible to develop the statistical
mechanics in terms of a dilute gas ofelementary excitationsor quasiparticles. For a translationally invariant
system the excited states are labelled by the momentumh̄k. Then the energy expression of the excited states
to be used in e.g. the partition function, is

E ' EG +
∑

k

nkεk (1)

wherenk = 0,1,2 · · · for Boson excitations (the present case) andnk = 0,1 for Fermion excitations, andεk

is theexcitation spectrumwhich is to be determined, empirically or by hard calculation. Although, as in the
ideal case, we consider plane wave momentum states, we could also localize the quasiparticles in space by
forming wave packets of nearby wave vectors. Then at low temperatures where the number excited is small,
they will on average be far apart and weakly interacting. Thus theexcitationscan be treated as an ideal gas,
even though the particles themselves are strongly interacting, and terms in Eq. (1) that are higher order (e.g.
excitation interaction terms innknk ′) can be neglected.

The concept of quasiparticles is rather subtle. It is best approached using the idea ofswitching onthe
strength of the interactions from the noninteracting state. In the noninteracting state the energy states are
certainly given by Eq. (1) with EG = 0, nk the number of particles transferred from the zero momentum
state to the state with momentum̄hk, and the spectrumε(0)k = h̄2k2/2m. Now switch on the interactions
between the particles. In a short time, which we would estimate to be abouth̄/V with V a measure of
the interaction strength, the particle ath̄k becomesdressedby interacting with the surrounding particles,
forming the elementary excitation or quasiparticle with the modified the energy spectrumεk . Since the total
momentum and particle number is conserved by the interactions, these quasiparticles have thesame quantum
numbersas the original ones. The quasiparticles are in one to one correspondence to the original excited
particles, and so thecountingof the states is the same as in the noninteracting system.

The quasiparticles we get by this process arenot in general true eigenstates of the system: if we wait a
longer time, the dressed particle state will decay into a mess of much more complicated states. We replace
the difficult (or impossible) task of listing thepreciseeigenstates of the strongly interacting system (which by
definition, never decay) by a discussion in terms ofquasieigenstates that have simple properties and counting,
but have a finite lifetime. This idea only makes sense if the lifetimeτk is long enough for the energy of the
elementary excitation to be well defined, i.e., by the uncertainty principle,h̄/τk � εk . That the quasiparticles
satisfy this can be demonstrated empirically by measuring the lifetime of the quasiparticle. It is often true
in low temperature quantum systems because there are not many states to decay into—i.e. there is a small
density of statesfor the decay process, which reduces the decay rate as predicted by the Fermi Golden Rule.

The idea of quasiparticles is largely due toLandau, and is well understood in the context of interacting
Fermi liquids, where the ideas can be justified by diagrammatic perturbation theory. Another example we
will discuss is phonon excitations of solids.

Excitation spectrum For the weakly interacting Bose gas the energy spectrum is found to be theBogoliubov
spectrum

εk =
√
(h̄ck)2+ (h̄2k2/2m)2 (2)
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Figure 1: Photon-roton spectrum of He4. The roton part may be parameterized asεk = 1r+ h̄2(k−kr)2/2mr
with the roton gapkB1r = 8.65K, the wave number of the roton mimimumkr = 0.192nm, and the roton
effective massmr = 0.16mHe.

Herec = (ng/m)1/2 with g the interaction strength is thespeed of soundin the liquid. The difference from
the noninteracting spectrum is that at smallk (abouth̄k < mc) the spectrum islinear εk ' (h̄c)k,and not
quadratic. This turns out to be vital for superfluidity, as we will see later.

For He4 the excitation spectrum may be measured by neutron scattering (although actually it was derived
first by Landau by fitting to the measured thermodynamic quantities using the sort of calculation we will do
below), and is sketched in the figure. Again the spectrum is linear at smallk, with a slope given by the speed
of sound in the liquid. The excitations here are therefore calledphonons. There is a dip in the spectrum at
largerk, at a wave number corresponding to a length scale of about the interatomic spacing. The excitations
around the dip are important in the thermodynamics (the energy is relatively low, and there are a large number
of states in the vicinity of the minimum). They are calledrotons. (The name comes from an early model
of the nature of the excitations, that is not thought to be very useful anymore.) Feynman presented a nice
approximate formula for the spectrum (see his book,Statistical Mechanics)

εk ' h̄2k2

2mS(k)
(3)

whereS(k) is thestructure factorof the liquid. The structure factorS(k) determines the X-ray scattering off
the liquid, and has a peak atk ' 2π/rnn wherernn is the nearest neighbor separation (defined precisely as
the position of the peak in the density distribution functiong(r)).
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Statistical Mechanics

The canonical partition function is

QN =
∑
{nk }

e−β(EG+
∑

k nkεk ) (4)

= e−βEG
∏

k

∞∑
n=0

e−βnεk = e−βEG
∏

k

(1− e−βεk )−1. (5)

Note that the excitations of the noninteracting system are obtained bymovinga particle from the zero
momentum condensate to a finite momentum state, so that the total particle number is unchanged. Thus we
can readily calculate in the canonical ensemble.

The Helmholtz free energyA = −kT lnQN is

A = EG + kT ln
(
1− e−βεk

)
. (6)

The internal energyU = −∂ lnQN/∂β is

U = EG +
∑

k

εk
1

eβεk − 1
. (7)

The finite temperature correction to the ground state energy is given by the average excitation energy, with
the number distribution given by the Bose distribution (with zeroµ because the excitations do not change
the particle number). You can readily check by transforming the sum overk to an integral in the usual way,
that for the noninteracting Bose gas withεk = h̄k2/2m at low temperatures the internal energy isU ∝ T 5/2,
so that the specific heatC ∝ T 3/2 as found before.

Low temperature specific heat At low temperatures only the low energy portion of the spectrum con-
tributes, which for both the weakly interacting Bose gas and He4 is εk = h̄ck. The internal energy is then
(transforming the sum

∑
k to an integral)

U = V

2π2

∫ ∞
0
dk k2 h̄ck

1

eβh̄ck − 1
(8)

= V (kT )
4

(h̄c3)

[
1

2π2

∫ ∞
0
dx

x3

ex − 1

]
. (9)

The quantity in the braces evaluates toπ2/30, so the low temperature specific heat is

C

Nk
= 2

15

N

V

(
kT

h̄c

)3

. (10)

For higher temperatures, the specific heat in Helium is dominated by the rotons, giving a specific heat varying
roughly ase−1r/kT .

Superfluidity

In superfluid He4, a circulating flow in a torus continues indefinitely, without dissipation. We want to
understand this, and the connection with Bose-Einstein Condensation.

3



Ideal Bose Gas Consider first flow states in the ideal Bose Gas at zero temperature when all the particles are
condensed into a single state. We model the torus as a lengthLwith periodic boundary conditions. A flowing
state is given by Bose condensing into a single particle state with momentumh̄k with k = (n2π/L,0,0)
with n integral. The many particle wavefunction is

9(x1, x2, . . . xN) =
N∏
i=1

ψ(xi) with ψ(x) = 1√
V
eik·x. (11)

The total momentum isP = Nh̄k, which we can write in terms of a momentum densityg = P/V = ρsvs with
vs = h̄k/m the velocity andρs called the superfluid density, which here is the total densityρs = ρ = Nm/V .
The “condensate wavefunction”ψ(x)—the single particle wavefunction of the Bose condensation—can be
written in magnitude-phase formψ = |ψ | eiφ and then the superfluid velocity is given by the gradient of the
phase

vs = h̄

m
∇φ. (12)

This allows the results to be generalized to a more complicated flow fields that correspond to aψ(x) that is
not simply a plane wave. Note that since the value ofk is quantized, so to is thecirculation (the line integral
of the velocity around a closed loop) ∮

vs · dl = n× h

m
(13)

with h/m the quantum of circulation. This is generally true, and follows from Eq. (12) and the single
valuedness of the quantum wavefunction (φ increases by multiples of 2π around a loop).

Interacting Bose System For the interacting system at zero temperature the many particle wavefunction
is not simply a product state, and in general it is too hard to calculate exactly. We can again learn about
carefully chosenaspects of the interacting system by the notion ofswitching onthe interactions from the
noninteracting state (sometimes calledcontinuation). The idea is that we set up a situation of interest in the
noninteracting system, and then imagine the physical processes that occur when we slowly switch on the
interaction (turn a “knob” that increases the interparticle potential). Of particular interest are theconserved
quantitiesthat cannot change during the switching on.

We do this for the flowing noninteracting state of the last section. As we turn up the interparticle potential,
the many particle state may change by interparticle scattering processes that take particles out of the state
h̄k into other momentum states: thisreducesthe condensate fraction, but since theinterparticle interaction
conserves the total momentum (two particles from the statek must scatter intok + q andk − q), thetotal
momentum of the system remainsP = Nh̄k. Thus in the interacting system we again have a flow state with
momentum densityg = ρsvs with ρs = ρ andvs = h̄k/m as before, even though the condensate fraction
f = Nk/N is reduced from unity.

Another way of understanding the flow state in the interacting system is to start from the interacting
system at rest, and then “run along” at a velocity−vs : the Galilean transformation to the runners rest frame
gives in this new frame of reference precisely the state we have just described.

Now we must determine if this flow state persists, even in the presence of interactions with fixed bodies
that do not necessarily preserve the total momentum (the walls of the container or a porous medium often
used in experiment): i.e. is it superfluid.

There are two ways the momentumg = ρsvs may decay:vs may decrease; orρs may decrease from
the valueρ. The first cannot happen continuously, since the circulation is quantized. This meansvs can
only change in jumps of(h/m)L−1, which can only occur through macroscopic events that will not occur
in large systems. This leaves us with the question of whether scattering off the walls etc. can continuously
reduceρs to zero. In the noninteracting flow state this is indeed possible, since a particle in theh̄k state can
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Figure 2: The slope of the dashed line—the shallowest tangent to the excitation curve—ish̄vc defining
the Landau critical velocity for superflowvc. For He4 the construction givesvc ' 1r/h̄kr which is about
60m s−1.

be scattered to the zero momentum state reducing the total energy byh̄2k2/2m. In the interacting system
we might expect that the scattering will occurif there are excitations from the flowing state that lower the
total energy. This is now easy to calculate. Using arguments of Galilean transformation the energy of an
excitation of momentum̄hk from the flowing state (which has energyEG + 1

2ρv
2
s with EG the nonflowing

ground state energy) is
ε
′
k = εk + h̄k · vs (14)

with εk the excitation energy from the nonmoving state discussed above. For the flow state to persist, we
must haveε′k > 0 which requires

εk > h̄kvs for anyk. (15)

Thus flows up to a critical velocityvc given by thēh−1 times theslope of the lowest tangent to theεk excitation
curve are superfluid. This is known as theLandau critical velocity. For the weakly interacting Bose gas
vc = c, and for superfluid He4 vc ' 1r/h̄kr ∼ 60m s−1.

Superflow at nonzero temperature At nonzero temperature the thermally excited excitations may re-
distribute and change the total momentum. Consider the situation where the condensed state flows at the
superfluid velocityvs , and the walls of the container are moving with velocityvn. The walls provide amo-
mentum bath. Equilibrium in contact with a momentum bath moving at velocityv is given by the Boltzmann
factore−β(E−P·v). Thus the number of excitations ath̄k with excitation energyε′k = εk + h̄k · vs is

nk = 1

εβ(ε
′
k−h̄k·vn) =

1

εβ[εk+h̄k·(vs−vn)]
= nB(εk + h̄k · (vs − vn)) (16)

with nB(ε) the Bose function(eβε−1)−1. The total momentum is the momentum of the flowing ground state
plus the momentum of the excitations

P = Nmvs +
∑

k

h̄k nB(εk + h̄k · (vs − vn)). (17)
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Figure 3: Superfluid density of He4. Three regions of behavior can be roughly identified: at low temperatures
ρn is dominated by the phonon region of the spectrum givingρn ∝ T 4; at intermediate temperatures rotons
are important; nearTc critical fluctuations dominate, and universality tells usρs goes to zero as(Tc − T )ν
with ν ' 0.669

For smallvs − vn we can Taylor expand thenB term. The zeroth order term gives zero sincenB(εk) is
spherically symmetric, leaving

P ' Nmvs +
∑

k

h̄k
(
−∂nB
∂εk

)
h̄k · (vn − vs) (18)

= Nmvs +
[

1

3

∑
k

h̄2k2

(
−∂nB
∂εk

)]
(vn − vs) (19)

on doing the angular average. Thus we can write the momentum density

g = P
V
= ρvs + ρn(vn − vs) (20)

with thenormal fluid density

ρn = 1

3V

∑
k

h̄2k2

(
−∂nB
∂εk

)
. (21)

Alternatively we can write this as
g = ρsvs + ρnvn (22)

with ρs = ρ − ρn. Note that at zero temperatureρs = ρ, andis not related to the condensate fraction. As
the temperature increasesρn increases, and we can identify the transition temperatureTc as whereρs → 0,
ρn→ ρ. The temperature dependence ofρs for He4 is plotted in the figure. Note that nearTc the excitations
are no longer dilute and Eq. (21) for ρn no longer applies. Arguments based on theuniversalityof the behavior
near second order phase transitions show thatρs goes to zero as apower lawρs ∝ (Tc− T )ν with ν ' 0.669
(close, but not equal, to 2/3).

Thus we can think of the superfluid state in two ways:

1. A “flowing ground state” with momentumρvs together with excitations giving momentumρn(vn−vs)
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2. A two fluid modelwhere the fluid appears to behave as having two components, asuperfluidcomponent
with “density” ρs and velocityvs and anormal fluid component with “density”ρn and velocityvn.
(The densities are in quotes, because they relate momentum to velocity, and do not determine the
mass.) With a little more work we could also calculate the total energy of the flowing state. It is found
to beE = 1

2ρsv
2
s + 1

2ρnv
2
n, also consistent with this two fluid way of thinking. The “normal fluid” is

called normal, since it is made up of a gas of excitations which can be scattered, leading to the usual
properties of a fluid such as viscosity: the normal fluid will come into equilibrium with the container
walls; the superfluid velocity persists independently.

Fundamental Description The most fundamental description of the superfluid state is that there is Bose
condensation into a condensate wavefunctionψ(x) = |ψ | eiφ. The superfluid velocity isvs = (h̄/m)∇φ,
and the energy in the rest frame of the momentum bath is

E = EG + 1

2
ρs(h̄/m)

2(∇φ)2. (23)

The parameterρs is astiffness constantthat gives the energy cost of a nonuniform condensate wavefunction.
It is quite analogous to the elastic constants of a crystal or the spin-wave stiffness of a magnet. The superfluid
momentum isgs = (∂E/∂vs) = ρsvs . We have estimatedρs based on a theory of a dilute gas of excitations.
The momentum in the presence of walls (a momentum bath) with velocityvn is given by a Galilean boost

g = ρsvs + ρvn = ρsv′s + ρnvn (24)

with v′s = vs + vn the superfluid velocity in the new frame of reference.
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