Physics 127a: Class Notes

Lecture 15: Statistical Mechanics of Superfluidity
Elementary excitations/quasiparticles

Ingeneral, itis hard to list the energy eigenstates, needed to calculate the statistical mechanics of an interacting
system. Indeed for a classical liquid, the statistical mechanics is very hard, and little is known except from
numerical calculations. For maguantunrsystems abw temperatureg is possible to develop the statistical
mechanics in terms of a dilute gasedémentary excitationsr quasiparticles For a translationally invariant

system the excited states are labelled by the momehkurihen the energy expression of the excited states

to be used in e.g. the partition function, is

E~E;+ ansk (1)
k

wheren, =0, 1, 2 - - for Boson excitations (the present case) ane= 0, 1 for Fermion excitations, arggl

is theexcitation spectrunwhich is to be determined, empirically or by hard calculation. Although, as in the
ideal case, we consider plane wave momentum states, we could also localize the quasiparticles in space by
forming wave packets of nearby wave vectors. Then at low temperatures where the number excited is small,
they will on average be far apart and weakly interacting. Thugxicgationscan be treated as an ideal gas,

even though the particles themselves are strongly interacting, and terms i) @t @re higher order (e.g.
excitation interaction terms it ny:) can be neglected.

The concept of quasiparticles is rather subtle. It is best approached using the &egcbing onthe
strength of the interactions from the noninteracting state. In the noninteracting state the energy states are
certainly given by Eq.1) with E; = 0, nx the number of particles transferred from the zero momentum
state to the state with momentutk, and the spectrum® = 7%k2/2m. Now switch on the interactions
between the particles. In a short time, which we would estimate to be &jdutwith V a measure of
the interaction strength, the particle’&t becomedressedby interacting with the surrounding particles,
forming the elementary excitation or quasiparticle with the modified the energy spegiri8ince the total
momentum and particle number is conserved by the interactions, these quasiparticles savesthgantum
numbersas the original ones. The quasiparticles are in one to one correspondence to the original excited
particles, and so theountingof the states is the same as in the noninteracting system.

The quasiparticles we get by this processrastin general true eigenstates of the system: if we wait a
longer time, the dressed particle state will decay into a mess of much more complicated states. We replace
the difficult (or impossible) task of listing thgreciseeigenstates of the strongly interacting system (which by
definition, never decay) by a discussion in termgudiseigenstates that have simple properties and counting,
but have a finite lifetime. This idea only makes sense if the lifetignis long enough for the energy of the
elementary excitation to be well defined, i.e., by the uncertainty prindipi®, << ¢x. That the quasiparticles
satisfy this can be demonstrated empirically by measuring the lifetime of the quasiparticle. It is often true
in low temperature quantum systems because there are not many states to decay into—i.e. there is a small
density of statefor the decay process, which reduces the decay rate as predicted by the Fermi Golden Rule.

The idea of quasiparticles is largely duelianday and is well understood in the context of interacting
Fermi liquids, where the ideas can be justified by diagrammatic perturbation theory. Another example we
will discuss is phonon excitations of solids.

Excitation spectrum For the weakly interacting Bose gas the energy spectrum is found to Begiotiubov
spectrum

e =/ (hek)? + (h22/2m)? )
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Figure 1: Photon-roton spectrum of H& he roton part may be parameterizedas- A, +h2(k —k,)%/2m,
with the roton gagkz A, = 8.65K, the wave number of the roton mimimukp = 0.192nm, and the roton
effective mass:, = 0.16mg,.

Herec = (ng/m)Y? with g the interaction strength is tfspeed of sounih the liquid. The difference from
the noninteracting spectrum is that at snta(aboutsik < mc) the spectrum iéinear ex >~ (ic)k,and not
quadratic. This turns out to be vital for superfluidity, as we will see later.

For He' the excitation spectrum may be measured by neutron scattering (although actually it was derived
first by Landau by fitting to the measured thermodynamic quantities using the sort of calculation we will do
below), and is sketched in the figure. Again the spectrum is linear at &meith a slope given by the speed
of sound in the liquid. The excitations here are therefore calemhons There is a dip in the spectrum at
largerk, at a wave number corresponding to a length scale of about the interatomic spacing. The excitations
around the dip are important in the thermodynamics (the energy is relatively low, and there are a large number
of states in the vicinity of the minimum). They are calledons (The name comes from an early model
of the nature of the excitations, that is not thought to be very useful anymore.) Feynman presented a nice
approximate formula for the spectrum (see his b@ihtistical Mechanigs

h2k?

2mS (k) ®)

Ek =

whereS (k) is thestructure factorof the liquid. The structure factdi(k) determines the X-ray scattering off
the liquid, and has a peak &t~ 27 /r,, wherer,, is the nearest neighbor separation (defined precisely as
the position of the peak in the density distribution functign)).



Statistical Mechanics

The canonical partition function is

Oy = Ze—ﬁ(EG+Zk nK k) (4)
{nk}
= ¢ PEc l_[ Ze‘ﬂngk = ¢ PEG 1_[(1 L (5)
k n=0 k

Note that the excitations of the noninteracting system are obtaineddwnga particle from the zero
momentum condensate to a finite momentum state, so that the total particle number is unchanged. Thus we
can readily calculate in the canonical ensembile.

The Helmholtz free energy = —kT In Qy is

A=Eg+kTIn(1—e 7). (6)
The internal energW/ = —dln Qy /08 is

1
UIEG—FZSkm. (7)
k

The finite temperature correction to the ground state energy is given by the average excitation energy, with
the number distribution given by the Bose distribution (with zerbecause the excitations do not change

the particle number). You can readily check by transforming the sumkoiean integral in the usual way,

that for the noninteracting Bose gas with= k?/2m at low temperatures the internal energyisx 7°/?,

so that the specific heét o« T%2 as found before.

Low temperature specific heat At low temperatures only the low energy portion of the spectrum con-
tributes, which for both the weakly interacting Bose gas anfiisley = fick. The internal energy is then
(transforming the su_, to an integral)

\%4 o 2
(kT)* 1/oo x3
=V—7| = d . 9
hed | 272 )y e —1 ©)
The quantity in the braces evaluatesttty 30, so the low temperature specific heat is

C 2N (kT\?

—=——— . (10)
Nk 15V \ hc

For higher temperatures, the specific heat in Helium is dominated by the rotons, giving a specific heat varying
roughly ase=4/kT
Superfluidity

In superfluid Hé, a circulating flow in a torus continues indefinitely, without dissipation. We want to
understand this, and the connection with Bose-Einstein Condensation.



Ideal Bose Gas Consider first flow states in the ideal Bose Gas at zero temperature when all the particles are
condensed into a single state. We model the torus as a I&ngttin periodic boundary conditions. A flowing

state is given by Bose condensing into a single particle state with momeéiwmith k = (27 /L, 0, 0)

with » integral. The many particle wavefunction is

N
1 .
W (Xq, X, . . . = ; ith = kX, 11
(X1, X2, - - - Xn) i|:1|1ﬁ(x) wi ¥ (X) «/Ve (11)

The total momentum iB = N7k, which we can write in terms of amomentum dengitg P/ V = p,v, with

vy = fik/m the velocity ang, called the superfluid density, which here is the total densgity p = Nm/ V.

The “condensate wavefunction’(x)—the single particle wavefunction of the Bose condensation—can be
written in magnitude-phase forgh = || ¢/ and then the superfluid velocity is given by the gradient of the

phase
h

v, = —Vo. (12)

m
This allows the results to be generalized to a more complicated flow fields that correspoiidxiothat is
not simply a plane wave. Note that since the valuk ©f quantized, so to is tharculation (the line integral

of the velocity around a closed loop)

%vs-dlznxﬁ (13)

m

with #/m the quantum of circulation This is generally true, and follows from Edl3) and the single
valuedness of the quantum wavefunctigniricreases by multiples of2around a loop).

Interacting Bose System For the interacting system at zero temperature the many particle wavefunction
is not simply a product state, and in general it is too hard to calculate exactly. We can again learn about
carefully choseraspects of the interacting system by the notioswitching onthe interactions from the
noninteracting state (sometimes caltamhtinuatior). The idea is that we set up a situation of interest in the
noninteracting system, and then imagine the physical processes that occur when we slowly switch on the
interaction (turn a “knob” that increases the interparticle potential). Of particular interest arentberved
quantitiesthat cannot change during the switching on.

We do this for the flowing noninteracting state of the last section. As we turn up the interparticle potential,
the many particle state may change by interparticle scattering processes that take particles out of the state
hk into other momentum states: thisduceshe condensate fraction, but since thieerparticle interaction
conserves the total momentum (two particles from the $tateist scatter int& + g andk — q), thetotal
momentum of the system remaihs= N#ik. Thus in the interacting system we again have a flow state with
momentum densitg = p,V, with p, = p andv, = 7ik/m as before, even though the condensate fraction
f = Nx/N is reduced from unity.

Another way of understanding the flow state in the interacting system is to start from the interacting
system at rest, and then “run along” at a veloeity,: the Galilean transformation to the runners rest frame
gives in this new frame of reference precisely the state we have just described.

Now we must determine if this flow state persists, even in the presence of interactions with fixed bodies
that do not necessarily preserve the total momentum (the walls of the container or a porous medium often
used in experiment): i.e. is it superfluid.

There are two ways the momentugm= p,v, may decay.v; may decrease; g#;, may decrease from
the valuep. The first cannot happen continuously, since the circulation is quantized. This mecas
only change in jumps ofk/m)L =1, which can only occur through macroscopic events that will not occur
in large systems. This leaves us with the question of whether scattering off the walls etc. can continuously
reducep, to zero. In the noninteracting flow state this is indeed possible, since a particlefik gtate can
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Figure 2: The slope of the dashed line—the shallowest tangent to the excitation cure—dsfining
the Landau critical velocity for superflow.. For He the construction gives, ~ A, /hik, which is about
60m st

be scattered to the zero momentum state reducing the total enefgfth2m. In the interacting system
we might expect that the scattering will ocdtithere are excitations from the flowing state that lower the
total energy This is how easy to calculate. Using arguments of Galilean transformation the energy of an
excitation of momentunik from the flowing state (which has energy; + %pvf with Es the nonflowing
ground state energy) is

£, = ek + K -V (14)

with e¢ the excitation energy from the nonmoving state discussed above. For the flow state to persist, we
must haves, > 0 which requires
e > hkvy for anyk. (15)

Thus flows up to a critical velocity, given by thei ! times theslope of the lowest tangent to theexcitation
curve are superfluid This is known as théandau critical velocity For the weakly interacting Bose gas
v, = ¢, and for superfluid Hev, ~ A, /hk, ~ 60m s,

Superflow at nonzero temperature At nonzero temperature the thermally excited excitations may re-
distribute and change the total momentum. Consider the situation where the condensed state flows at the
superfluid velocity,, and the walls of the container are moving with velocity The walls provide ano-

mentum bathEquilibrium in contact with a momentum bath moving at velowitg given by the Boltzmann
factore=#(E=PV) Thus the number of excitations/at with excitation energy; = & + ik - v, is

1 1
T gBle—hkvy) T g BlekHhk:(Vi—va)]

ny

=ng(er + hK - (v, — V) (16)

with n 3 (¢) the Bose functiorie?* — 1)~1. The total momentum is the momentum of the flowing ground state
plus the momentum of the excitations

P=Nmv, + Y hknp(ec + K - (v, = V). (17)
k
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Figure 3: Superfluid density of HeThree regions of behavior can be roughly identified: atlow temperatures
on is dominated by the phonon region of the spectrum givingc 74; at intermediate temperatures rotons
are important; neaf, critical fluctuations dominate, and universality tellsgsgoes to zero aél,. — T)"

with v ~ 0.669

For smallv, — v,, we can Taylor expand thez term. The zeroth order term gives zero simgde;) is
spherically symmetric, leaving

0
P~ Nmv, + Y hk (—ﬂ> Ak - (v, — V) (18)
K 88k
1 8]’13
=Nmv,+ | =Y R%% [——= ) | (v, — v, 19
m‘+[32k: ( aSk)} 5 (19)
on doing the angular average. Thus we can write the momentum density
P
g= V = pVy + 0 (V, — Vy) (20)
with the normal fluid density
1 31’13
==y A (——). 21
p 3V Xk: ( 88k ) ( )
Alternatively we can write this as
g = psVs + PnVa (22)

with p;, = p — p,. Note that at zero temperatupg = p, andis not related to the condensate fractiois
the temperature increasgsincreases, and we can identify the transition temperatues whereo, — 0,
on — p. The temperature dependenceppfor He' is plotted in the figure. Note that ne#rthe excitations
are no longer dilute and EQR Q) for p, no longer applies. Arguments based onuh#/ersalityof the behavior
near second order phase transitions showghgbes to zero aspower lawp, « (T, — T)" with v >~ 0.669
(close, but not equal, to/3).

Thus we can think of the superfluid state in two ways:

1. A“flowing ground state” with momentupv, together with excitations giving momentusp(v,, — V)



2. Atwo fluid modeivhere the fluid appears to behave as having two componentpeafluidcomponent
with “density” p, and velocityv, and anormal fluid component with “density’p, and velocityv,,.
(The densities are in quotes, because they relate momentum to velocity, and do not determine the
mass.) With a little more work we could also calculate the total energy of the flowing state. Itis found
to beE = 1p,v? + 1p,v2, also consistent with this two fluid way of thinking. The “normal fluid” is
called normal, since it is made up of a gas of excitations which can be scattered, leading to the usual
properties of a fluid such as viscosity: the normal fluid will come into equilibrium with the container
walls; the superfluid velocity persists independently.

Fundamental Description The most fundamental description of the superfluid state is that there is Bose
condensation into a condensate wavefunctlqr) = |v| ¢'. The superfluid velocity is, = (h/m)Ve,
and the energy in the rest frame of the momentum bath is

E = Eg+ 5 pu(h/mP (Vo) (23)

The parametep, is astiffness constarihat gives the energy cost of a nonuniform condensate wavefunction.
Itis quite analogous to the elastic constants of a crystal or the spin-wave stiffness of a magnet. The superfluid
momentum igy; = (0 E/av,) = p,Vs. We have estimated, based on a theory of a dilute gas of excitations.

The momentum in the presence of walls (a momentum bath) with velacit/given by a Galilean boost

g = psVs + pVp = /Osv; + PnVin (24)

with v, = v, + v, the superfluid velocity in the new frame of reference.
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