
Physics 127a: Class Notes

Lecture 14: Bose Condensation

Ideal Bose Gas

We consider an gas of ideal, spinless Bosons in three dimensions. The grand potential�(T ,µ, V ) is given
by

�

kT
= V

λ3

2

π1/2

∫ ∞
0
y1/2 ln(1− ze−y) dy, (1)

with λ = h/√2πmkT andz = eβµ the fugacity. It is convenient to integrate by parts, and write the result
in the form

�

NkT
= − 1

ρλ3

4

3π1/2

∫ ∞
0

y3/2

z−1ey − 1
dy. (2)

The chemical potential is fixed by the number of particleN in the physical system, or in terms of the density
ρ = N/V (see Eq. (25) of lecture 15)

ρλ3 = 2

π1/2

∫ ∞
0

y1/2

z−1ey − 1
dy (3)

which is to be solved forz(ρ, T ).
Equations (2) and (3) completely give the thermodynamics. Remember, for example� = −PV in

general, and for a non-relativistic gas the internal energy isU = 3
2PV = −3

2�. To evaluate the properties
we need to look at the properties of theBose functions

gν(z) = 1

(ν − 1)!

∫ ∞
0

yν−1

z−1ey − 1
dy (4)

(for half-integral factorials12! =
√
π

2 and 3
2! = 3

2 × 1
2!, etc.). Then we have

ρλ3 = g3/2(z) (5)

�

NkT
= −g5/2(z)

g3/2(z)
. (6)

Properties of these functions are calculated in the Mathematica fileBose.nbon the website, and also see
Appendix D ofPathria. The functions are plotted below.
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It is often good to look at thehigh temperature expansionfirst. The physics is easy asT →∞ (classical,
interactions unimportant), and expanding about here can give useful insights.

At high temperaturesρλ3→ 0, and soz→ 0. You can get Mathematica (or Maple, Scientific Word etc.)
to expand the Bose functions as a Taylor expansion inz, or you can do it by hand noting that for smallz

1

z−1ey − 1
= z−y

1− ze−y =
∞∑
n=1

(ze−y)n (7)

and
1

(ν − 1)!

∫ ∞
0
yν−1e−ny = 1

nν
. (8)

Either way you should find
ρλ3 = z+ 2−3/2z2+ · · · (9)

which can be inverted to give
z = ρλ3− 2−3/2(ρλ3)2+ · · · . (10)

Note that the first term in the series gives the classical (non-degenerate) result for the chemical potential.
Similarly

− �

NkT
= z+ 2−5/2z2+ · · ·
z+ 2−3/2z2+ · · · ' 1− 2−5/2z+ · · · ' 1− 2−5/2ρλ3+ · · · . (11)

(Going to this order is pretty easy. To go higher order by hand is a little tedious.) From this we can get the
expansion for the equation of state

PV

NkT
= 1− 2−5/2ρλ3+ · · · . (12)

Note this is also alow densityexpansion, and is known as thevirial expansion(although this is more
commonly an expansion in weak interactions rather than weak quantum effects). The specific heat is

CV

Nk
= 1

Nk

(
∂U

∂T

)
N,V

= 3

2

∂

∂T

(
− �

Nk

)
N,V

= 3

2

(
1+ 2−7/2ρλ3+ · · · ) . (13)

You can identify the classical results as the first terms in the expansions. Note the specific heatrises above
the classical result as the temperature is lowered, even though it must go to zero asT → 0.

Now we look at what happens as the temperature is lowered with fixed densityρ = N/V . Lets look
at Eq. (3) first. As the temperature is lowered andρλ3 increases,z must increase so that the right hand
side increases. Howeverz < 1, otherwise the integral diverges (there would then be somey for which the
denominator goes to zero). Atz = 1 the functiong3/2(z) takes on its greatest value, equal toζ(3

2) = 2.612 4
(seeMathematica plots). This is a problem, since the left hand side continues to increase asT is lowered!
Thus Eq. (3) breaks downfor T < Tc given by

ρλ3(Tc) = ζ(3
2). (14)

The problem arises because the occupationN0 =
〈
np=0

〉
of thep = 0 (εp = 0) state diverges asz→ 1

N0 = 1

z−1− 1
' −kT

µ
. (15)

Below Tc we must allow for amacroscopic numberof particles in the zero momentum state, and thenthe
steps going from a sum over discrete momentum states to an integral over continuous momentum is incorrect
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for this state. The total number of particlesNp>0 in thep 6= 0 states is still adequately given by the integral
expression, though, and so belowTc we have

N = N0+Np>0 (16)

with Np>0 given by Eq. (3) with z = 1 on the right hand side, andNp>0 replacingN on the left hand side,
so that

Np>0

V
λ3(T ) = ζ(3/2) (17)

which using Eq. (14) can be written
Np>0

N
=
(
T

Tc

)3/2

(18)

and then
N0

N
= 1− Np>0

N
= 1−

(
T

Tc

)3/2

. (19)

Finally this fixesµ through Eq. (15) to be−kT /N0, which isO(1/N) and so zero for thermodynamic
purposes..

The grand potential Eq. (2) is now easily evaluated since forT < Tc we have on the right hand side
g5/2(z = 1) = ζ(5/2) = 1.341 5. Thus using the results for the thermodynamics outlined below Eq. (3):

�

NkT
= − 1

ρλ3
ζ(5/2) (20)

U = 3

2
kT

V

λ3
ζ(5/2) (21)

P = kT 1

λ3
ζ(5/2) (22)

cV = CV

N
= 15

4

V

Nλ3
ζ(5/2) ∝ T 3/2. (23)

Note the strange results that the internal energy is independent of the number of particles, and the pressure
is independent of the volume! The latter means the compressibility is infinite. With a little effort you can
also show that the specific heat is continuous atTc but has a cusp— a discontinuous slope. (This comes
from differentiating Eq. (2) w.r.t. T and noting that the temperature derivative of the integral is zero atTc.
which in turn depends on the fact thatg3/2(z) approaches itsz→ 1 limiting value with infinite slope—see
the figure.)

Note that the contribution to� from thep = 0 state iskT ln(1− z) which forT < Tc becomes of order
kT lnN0. Although large, this is notO(N), and so can be ignored in the calculation. Thus� is properly
given by the integral expression (except, of course, when we calculateN given by∂�/∂µ!). Also it can be
seen that that the occupation number of the momentum states near zero areO(N2/3), which again is large,
but negligible compared to the other,O(N) terms, so that corrections to the integral expression from these
states is not important.

Real Systems

The Bose-Einstein condensation (BEC) temperature for an ideal Bose gas is from Eq. (14)

kTc ' 0.061
h2

m

(
N

V

)2/3

. (24)

There are two strategies that have been successful in observing BEC in the laboratory:
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• Density typical of everyday liquids, and then weak interactions so that solidification does not occur,
even at low temperatures, and small mass so that the quantum effects are large: liquid He4 density
1.5× 1022cm−3 and thenTc should be about 3K.

• Dilute systems (so that the interactions are not so important) at thevery low temperatures that are
attainable by laser cooling (supplemented with other techniques) for atom traps, e.g. 5× 105 sodium
atoms trapped at a density of 1014cm−3 at 10−6K.

I will discuss the first case here, and refer you to the 2001 Nobel Prize website for lectures on the second
case (seeclass websitefor links).

Superfluid He4 The condensed phase of the Bose isotope of Helium remains liquid down (it is believed)
to the absolute zero of temperature at pressures below 25atmos because of the large zero point energy (small
mass) and small attractive energy. At a temperatureTc that is around 2− 3K there is a phase transition to a
new phase with remarkable superfluid properties. Since the temperature is around where BEC is expected,
and the superfluid properties can be understood in terms of BEC (see below) we associate the transition with
BEC i.e. amacroscopic occupation of the zero momentum state.

The specific heat is rather different than the predictions for the ideal Bose gas, varying asT 3 at low
temperatures, and showing a divergence atTc as

C(T ) ∼ A± |T − Tc|−α + C ′(T ) (25)

whereC ′(T ) is a smooth background, the constantsA± are forT ≷ Tc, and the exponentα is found to be
very smallα ' −0.026. (For a long time the divergence was thought to be logarithmic, i.e. ln|T − Tc|,
which would correspond toα→ 0.) The shape ofC(T ) is reminiscent of the greek letterλ, and the transition
is sometimes called thelambda transition. We will derive theT 3 and will understand the divergence in terms
of critical phenomena next term later in the course.

For a review of other neat properties of the superfluid phase, seeStates of Matter, by David Goodstein,
§5.4.

Is there BEC? For the ideal Bose gas, the occupationN0 of the zero momentum state at zero temperature
(the ground state) is the total number of particlesN . This is certainly not true in He4, since it is readily shown
that this state is not an eigenstate of the interacting HamiltonianH . In fact operating on this state with the
Hamiltonian we get the sum of states with two particles excited from the zero momentum state to states with
momentum±h̄k

H |N,0,0, · · · 〉 =
∑

k

Ck |N − 2,0, · · · , Nk = 1, N−k = −1, · · · 〉 . (26)

(This is easy to see in the coordinate representation where the ground state is just a constant, and the damaging
part ofH is the potential

V = 1

2

∑
i,j

V (xi − xj ) = 1

2

∑
i,j

∑
k

Ṽke
ik·(xi−xj ) (27)

taking the Fourier transform in the last step.)
However there is evidence thatN0 remains macroscopic, i.e. thecondensate fractionf0 = N0/N is some

number between 0 and 1 that remains nonzero asN →∞. The evidence comes partly from considering the
weakly interacting Bose gaswhereV (r) is assumed small, and it can be shown thatf0 is nonzero

f0 = 1− 8

3

(
N

V

a3

π

)1/2

(28)
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http://www.cmp.caltech.edu/~mcc/Ph127/index.html


wherea is the scattering lengthmg/4πh̄2 andg = ∫ V (r) d3r (so weak interactions is smallg). In He4 itself,
there is evidence from neutron scattering, and also from numerical Monte Carlo calculations thatf0 ' 0.1.
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