Physics 127a: Class Notes

Lecture 14: Bose Condensation
Ideal Bose Gas

We consider an gas of ideal, spinless Bosons in three dimensions. The grand p&€htial V) is given

by
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with A = h/+/2mmkT andz = e#* the fugacity. It is convenient to integrate by parts, and write the result

in the form L 32

Q © y
NEkT — o8 12/ —i - ()
NkT pA33n12 |y z7lev —1

The chemical potential is fixed by the number of parti€lén the physical system, or in terms of the density

o = N/V (see Eq. (25) of lecture 15)
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which is to be solved foz(p, T).

Equations 2) and ) completely give the thermodynamics. Remember, for exarfiple — PV in
general, and for a non-relativistic gas the internal enerdy is %’PV = —%’Q. To evaluate the properties
we need to look at the properties of tBese functions
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(for half-integral factorials! = */7; and3! = 3 x 11, etc.). Then we have
PA> = g3/2(2) (5)
Q
_ 852(2) (©)

NKT ~— g3(2)°

Properties of these functions are calculated in the MathematicBdie.nbon the website, and also see
Appendix D ofPathria. The functions are plotted below.
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It is often good to look at theigh temperature expansidinst. The physics is easy 85— oo (classical,
interactions unimportant), and expanding about here can give useful insights.

At high temperaturegi® — 0, and s@ — 0. You can get Mathematica (or Maple, Scientific Word etc.)
to expand the Bose functions as a Taylor expansiafn an you can do it by hand noting that for small
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Either way you should find
o=z 42722 ... 9)
which can be inverted to give
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Note that the first term in the series gives the classical (non-degenerate) result for the chemical potential.
Similarly
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(Going to this order is pretty easy. To go higher order by hand is a little tedious.) From this we can get the
expansion for the equation of state

PV

T =1-2%2p)3 ..., (12)

Note this is also dow densityexpansion, and is known as th@ial expansion(although this is more
commonly an expansion in weak interactions rather than weak quantum effects). The specific heat is
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You can identify the classical results as the first terms in the expansions. Note the specifiedseaibove
the classical result as the temperature is lowered, even though it must go to Zere &

Now we look at what happens as the temperature is lowered with fixed densitw/ V. Lets look
at Eq. @) first. As the temperature is lowered apd® increasesz must increase so that the right hand
side increases. However< 1, otherwise the integral diverges (there would then be spfiee which the
denominator goes to zero). At= 1 the functiongs/»(z) takes on its greatest value, equa&@) =2.6124
(seeMathematica plofs This is a problem, since the left hand side continues to increagesabbwered!
Thus Eg. 8) breaks dowrior T < T, given by

pr3(T) = £ (D). (14)
The problem arises because the occupatipn= (npzo) of thep = 0 (¢, = 0) state diverges as— 1

1 —kT
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Below T, we must allow for anacroscopic numbeof particles in the zero momentum state, and ttien
steps going from a sum over discrete momentum states to an integral over continuous momentum is incorrect
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for this state. The total number of particl&$.q in thep # O states is still adequately given by the integral
expression, though, and so bel@wwe have

N = No+ N,-o (16)

with N,.o given by Eq. 8) with z = 1 on the right hand side, and,. o replacingN on the left hand side,
so that
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which using Eq. {4) can be written
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Finally this fixesu through Eq. {5) to be —kT /Ny, which is O(1/N) and so zero for thermodynamic
purposes..

The grand potential Eq2] is now easily evaluated since f@r < 7. we have on the right hand side
gs/2(z = 1) = ¢(5/2) = 1.3415. Thus using the results for the thermodynamics outlined belowsEq. (
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Note the strange results that the internal energy is independent of the number of particles, and the pressure
is independent of the volume! The latter means the compressibility is infinite. With a little effort you can
also show that the specific heat is continuoug.abut has a cusp— a discontinuous slope. (This comes
from differentiating Eq. Z) w.r.t. T and noting that the temperature derivative of the integral is zefp. at
which in turn depends on the fact thaf»(z) approaches its — 1 limiting value with infinite slope—see
the figure.)

Note that the contribution t€ from thep = 0 state ikT In(1 — z) which forT < T, becomes of order
kT In Ny. Although large, this is noO (N), and so can be ignored in the calculation. Tkug properly
given by the integral expression (except, of course, when we calMlgfeen bya2/ou!). Also it can be
seen that that the occupation number of the momentum states near z&ra\&¥€), which again is large,
but negligible compared to the oth&(N) terms, so that corrections to the integral expression from these
states is not important.

Real Systems

The Bose-Einstein condensation (BEC) temperature for an ideal Bose gas is from)Eq. (
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There are two strategies that have been successful in observing BEC in the laboratory:
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 Density typical of everyday liquids, and then weak interactions so that solidification does not occur,
even at low temperatures, and small mass so that the quantum effects are large: Itjd&hsity
1.5 x 10%%cm~3 and thenT, should be about 3K

« Dilute systems (so that the interactions are not so important) atehglow temperatures that are
attainable by laser cooling (supplemented with other techniques) for atom traps e X® Sodium
atoms trapped at a density of'fém—23 at 10°°K.

| will discuss the first case here, and refer you to the 2001 Nobel Prize website for lectures on the second
case (seelass websitéor links).

Superfluid He* The condensed phase of the Bose isotope of Helium remains liquid down (it is believed)
to the absolute zero of temperature at pressures below 25atmos because of the large zero point energy (small
mass) and small attractive energy. At a temperalut@at is around 2- 3K there is a phase transition to a
new phase with remarkable superfluid properties. Since the temperature is around where BEC is expected,
and the superfluid properties can be understood in terms of BEC (see below) we associate the transition with
BEC i.e. amacroscopic occupation of the zero momentum state

The specific heat is rather different than the predictions for the ideal Bose gas, varyirfgahsow
temperatures, and showing a divergencg.ats

C(T)~ AL|T —T.|7* + C(T) (25)

whereC’(T) is a smooth background, the constaAtsare for7T = T,, and the exponent is found to be
very smalle >~ —0.026. (For a long time the divergence was thought to be logarithmic, i.& T,]|,
which would correspond t®@ — 0.) The shape af (T') is reminiscent of the greek lettgrand the transition

is sometimes called tHambda transition We will derive theT® and will understand the divergence in terms
of critical phenomena next term later in the course.

For a review of other neat properties of the superfluid phaseStdes of Matterby David Goodstein,
§5.4.

Is there BEC? For the ideal Bose gas, the occupatipof the zero momentum state at zero temperature
(the ground state) is the total number of partigiesThis is certainly not true in Hesince it is readily shown
that this state is not an eigenstate of the interacting HamiltoHiain fact operating on this state with the
Hamiltonian we get the sum of states with two particles excited from the zero momentum state to states with
momentumt-/ik

HIN,0,0,---) =Y CiI[N=20 Ne=LN_=-1-). (26)
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(Thisis easy to see in the coordinate representation where the ground state is just a constant, and the damaging
part of H is the potential
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taking the Fourier transform in the last step.)

However there is evidence thily remains macroscopic, i.e. thendensate fractioify, = No/N is some
number between 0 and 1 that remains nonzem as co. The evidence comes partly from considering the
weakly interacting Bose gaghereV (r) is assumed small, and it can be shown tfias nonzero
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http://www.cmp.caltech.edu/~mcc/Ph127/index.html

whereq is the scattering lengtihg /4n 2 andg = [ V (r) d% (so weak interactions is smal). In Het itself,
there is evidence from neutron scattering, and also from numerical Monte Carlo calculatiofisth@tl.
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